
NEAR-FIELD MIMO CHANNEL MODELING WITH APPLICATIONS TO SMALL

ANECHOIC CHAMBERS

By

Jonathan Tefft

Bachelor of Science in Electrical Engineering, The University of New Hampshire, 2009

Master of Science in Electrical Engineering, The University of New Hampshire, 2011

DISSERTATION

Submitted to The University of New Hampshire

in Partial Ful�lment of

the Requirements for the Degree of

Doctor of Philosophy

in

Electrical Engineering

December 2018



This dissertation has been examined and approved in partial ful�llment of the requirements

for the degree of Doctor of Philosophy in Electrical Engineering by:

Dissertation Director, Dr. Nicholas J. Kirsch, Associate Professor of

Electrical and Computer Engineering

Dr. Kent A. Chamberlin, Professor of

Electrical and Computer Engineering

Dr. Michael J. Carter, Associate Professor of

Electrical and Computer Engineering

Dr. Qiaoyan Yu, Associate Professor of

Electrical and Computer Engineering

Dr. Joachim Raeder, Professor of

Physics

On November 14, 2018

Approval signatures are on �le with the University of New Hampshire Graduate School



Acknowledgements

I would like to acknowledge Dr. Nicholas Kirsch for advising me on this dissertation

work, and for funding me with a Graduate Research Assistantship for multiple years. This

allowed me to continue and complete my work despite numerous changes in direction in my

research.

I would like to acknowledge Octoscope, Inc. and Fanny Mlinarsky for funding much of

this research, and providing a small anechoic chamber for measurements associated with

much of the work in this dissertation. Without this, the work of this dissertation could not

have been produced.

I would also like to acknowledge my committee members Dr. Kent Chamberlin, Dr.

Michael Carter, Dr. Qiaoyan Yu, and Dr. Joachim Raeder, for agreeing to be on my

committee and for taking the time to review my dissertation. I especially would like to

thank Dr. Chamberlin and Dr. Carter for providing advice on several electromagnetic and

mathematical topics included in this dissertation.

I would also like to thank my fellow graduate students in the UNH Wireless Systems Lab

for their moral support over the past several years. Finally, I would like to acknowledge my

parents John and Susan Te�t, my partner Avery Parkes, and my friends for their in�nite

patience and support. I could not have made it through this arduous process without you.

Jonathan Te�t



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Importance of Small Chamber MIMO Test Solutions . . . . . . . . . 3

1.1.2 Importance of Near-Field MIMO Channel Models . . . . . . . . . . . 5

1.2 Contributions, and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 SISO channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Near-Field Topics and Mutual Coupling . . . . . . . . . . . . . . . . 21

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 MIMO-OTA Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Near-Field MIMO Channels and Capacity . . . . . . . . . . . . . . . 28

iii



2.3 Preliminary Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Hertzian Dipole Field-Based Channel Matrix Formulation . . . . . . 34

2.3.2 AWGN Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4 Capacity Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.5 Channel and Capacity Simulation . . . . . . . . . . . . . . . . . . . . 43

2.3.6 Background for Selection of Free-Space Green's Function as Basis . . 45

3. Small Anechoic Chamber Feasibility for MIMO-OTA Testing . . . . . . . 57

3.1 Electromagnetic Field Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Number of probe antennas . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.2 3GPP SCME Channel Model . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Small chamber system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Computational Electromagnetic Model . . . . . . . . . . . . . . . . . 65

3.3 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Electromagnetic Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4. Near-Field Channel Model Framework . . . . . . . . . . . . . . . . . . . . 74

4.1 Formulation of Channel using Dipole Arrays . . . . . . . . . . . . . . . . . . 76

4.1.1 Mathematical Channel Model with Arbitrary Dipole Orientations . . 78

4.1.2 Numerical Computation of Dipole Array Channel . . . . . . . . . . . 86

4.1.3 Numerical Computation Setup and Results . . . . . . . . . . . . . . . 88

4.2 Dipole Array Channel with Spatial Attribute Function Decomposition . . . . 92



4.2.1 Plane Waves as Spatial Attribute Functions . . . . . . . . . . . . . . 94

4.2.2 Point Sources as Spatial Attribute Functions . . . . . . . . . . . . . . 98

4.2.3 Point Source Location . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.4 Inner Product of Point Sources . . . . . . . . . . . . . . . . . . . . . 101

4.2.5 Use of Point Source and PlaneWaves as Joint Spatial Attribute Functions104

4.3 Fitting of Spatial Attribute Functions to Numerical Channel . . . . . . . . . 104

4.3.1 Point Source Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Re�nement Using Plane Waves . . . . . . . . . . . . . . . . . . . . . 106

4.4 Validation of Spatial Attribute Function Selection with Numerical Channel . 107

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5. Statistical and Frequency Extensions of Near-Field Channel Model . . . 112

5.1 Accurate Method of Fitting Spatial Attribute Functions to Measured Data . 114

5.1.1 Generalized Least Squares . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.2 Covariograms and Spatial Dependence . . . . . . . . . . . . . . . . . 116

5.1.3 Complex Geostatistical Covariance Model . . . . . . . . . . . . . . . 118

5.1.4 Geostatistical Regression . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.5 Geostatistical Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Adapting Spatial Attribute Function Set for a Wideband Model . . . . . . . 128

5.2.1 Algorithm for Fitting Spatial Attribute Function Set . . . . . . . . . 130

5.2.2 Modeling Coe�cients as Polynomial Functions of Frequency . . . . . 131

5.2.3 Final Wideband Model Description . . . . . . . . . . . . . . . . . . . 132

5.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.1 Chamber Con�guration and Properties . . . . . . . . . . . . . . . . . 133



5.3.2 Antenna Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.3 Measurement Equipment . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Measurement Campaign Description . . . . . . . . . . . . . . . . . . . . . . 138

5.4.1 Antenna Orientations and Positions . . . . . . . . . . . . . . . . . . . 140

5.4.2 Chosen Measurement Campaign Positions . . . . . . . . . . . . . . . 142

5.4.3 Resulting Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.5 Modeling of Measurement Data . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5.1 Analysis of Complex Geostatistical Covariance Of Measurements . . . 150

5.5.2 Selected Wideband Frequency Bands for Modeling . . . . . . . . . . . 161

5.5.3 Performance Analysis of Frequency-Scaled Spatial Attribute Functions 162

5.5.4 Spatial Attribute Function Set Extension to Wideband Model . . . . 164

5.5.5 Wideband Model Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 168

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6. Application of Small Chamber Model to MIMO Analysis . . . . . . . . . 173

6.1 Small Anechoic Chamber Channel and Impulse Response . . . . . . . . . . . 173

6.2 Small Anechoic Chamber Spatial Correlation Analysis . . . . . . . . . . . . . 178

6.3 Wideband MIMO Capacity Using Small Chamber Channel Model . . . . . . 185

6.3.1 MIMO Capacity Analysis System Description . . . . . . . . . . . . . 185

6.3.2 MIMO Capacity and Eigenvalue Results . . . . . . . . . . . . . . . . 186

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 196

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



List of Tables

3.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



List of Figures

1.1 3GPP Release Timeline for 5G [1] . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribution Flowchart for Chapters 4 and 5 . . . . . . . . . . . . . . . . . . 7

2.1 2 Element Dipole and Loop Antenna Array [2] . . . . . . . . . . . . . . . . . 31

2.2 Near-Field 2× 2 MIMO Example [2] . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Equivalent Circuit for Near-Field MIMO System [2] . . . . . . . . . . . . . . 32

2.4 Near-Field MIMO Array Re�ector [3] . . . . . . . . . . . . . . . . . . . . . . 33

2.5 FDTD Near-Field MIMO Array Simulation [3] . . . . . . . . . . . . . . . . . 33

2.6 2× 2 MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Capacity with Uniform Allocation vs. SNR and Spacing . . . . . . . . . . . 45

2.8 Dipole Electric Field Formulation . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 Dipole Mutual Impedance Formulation . . . . . . . . . . . . . . . . . . . . . 53

2.10 Dipole Self Impedance Formulation . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Small Anechoic Chamber Dimensions . . . . . . . . . . . . . . . . . . . . . . 63

3.2 HFSS Chamber Model of a Small Chamber . . . . . . . . . . . . . . . . . . . 66

3.3 CDF of Re�ectivity for Select Con�gurations, 700 MHz and 35 degree spread 68

4.1 Chapter 4 Contribution Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



4.2 Dipole Mutual Impedance Formulation . . . . . . . . . . . . . . . . . . . . . 78

4.3 Dipole Self Impedance Formulation . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Antenna Array and Dipole Port De�nitions . . . . . . . . . . . . . . . . . . . 82

4.5 Transmission Line Network De�nition . . . . . . . . . . . . . . . . . . . . . . 83

4.6 De�nition of Parallel Admittance Networks . . . . . . . . . . . . . . . . . . . 84

4.7 Modeled System for Numerical Computation . . . . . . . . . . . . . . . . . . 89

4.8 Magnitude of Channel Vs. Dipole Position . . . . . . . . . . . . . . . . . . . 91

4.9 Phase of Channel Vs. Dipole Position . . . . . . . . . . . . . . . . . . . . . . 91

4.10 Visualization of Point Source Wave Fronts . . . . . . . . . . . . . . . . . . . 100

4.11 Normalized Histogram of Cross-Correlation Vs. Separation . . . . . . . . . . 103

4.12 LogNormal Mean EVM For Combinations of Spatial Attribute Functions . . 108

4.13 Standard Deviation of EVM For Combinations of Spatial Attribute Functions 110

4.14 LogNormal Mean + 1 SD EVM For Combinations of Spatial Attribute Functions110

5.1 Chapter 5 Contribution Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Octoscope octoBox BOX-38 Interior . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Octoscope OBS-14 Log Periodic Antenna [4] . . . . . . . . . . . . . . . . . . 135

5.4 Octoscope OBS-14 Array [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Octoscope OBS-14 Radiation Patterns [4] . . . . . . . . . . . . . . . . . . . . 136

5.6 Pasternack PE51083 Rubber Duck Antenna [5] . . . . . . . . . . . . . . . . . 137

5.7 Keysight E5063A VNA [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.8 Chamber and Measurement System Diagram . . . . . . . . . . . . . . . . . . 141

5.9 Measured Channel Magnitude (dB), Probe One (Located in Lower Right),

5.15 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



5.10 Measured Channel Phase (rad.), Probe One (Located in Lower Right), 5.15

GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.11 LN Mean + σ EVM, Probe One, 5.725 GHz . . . . . . . . . . . . . . . . . . 148

5.12 LN Mean + σ EVM, Probe Two, 5.725 GHz . . . . . . . . . . . . . . . . . . 148

5.13 LN Mean + σ EVM, Probe Three, 5.725 GHz . . . . . . . . . . . . . . . . . 149

5.14 LN Mean + σ EVM, Probe Four, 5.725 GHz . . . . . . . . . . . . . . . . . . 149

5.15 Measured Channel Spatial X-Cov., Mag., Probe One, 5.15 GHz . . . . . . . 152

5.16 Measured Channel Spatial X-Cov., Real, Probe One, 5.15 GHz . . . . . . . . 152

5.17 Measured Channel Spatial X-Cov., Imag., Probe One, 5.15 GHz . . . . . . . 153

5.18 Measured Channel Spatial Power Spectrum, Probe One, 5.15 GHz . . . . . . 153

5.19 Residual Emp. Spatial X-Cov., Mag., Probe One, 5.15 GHz . . . . . . . . . . 154

5.20 Residual Emp. Spatial X-Cov., Real, Probe One, 5.15 GHz . . . . . . . . . . 155

5.21 Residual Emp. Spatial X-Cov., Imag., Probe One, 5.15 GHz . . . . . . . . . 156

5.22 Residual Emp. Spatial Power Spectrum, Probe One, 5.15 GHz . . . . . . . . 157

5.23 Residual Model Spatial X-Cov., Mag., Probe One, 5.15 GHz . . . . . . . . . 158

5.24 Residual Model Spatial X-Cov., Real, Probe One, 5.15 GHz . . . . . . . . . 159

5.25 Residual Model Spatial X-Cov., Imag., Probe One, 5.15 GHz . . . . . . . . . 160

5.26 Empirical LN Mean EVM vs. Freq., Probe One Band Four . . . . . . . . . . 163

5.27 Empirical LN Mean EVM vs. Freq., Probe Four Band Three . . . . . . . . . 163

5.28 Emp. and Poly. Model of β1 Mag. vs. Freq., Probe One Band Two . . . . . 165

5.29 Emp. and Poly. Model of β1 Phase vs. Freq., Probe One Band Two . . . . . 166

5.30 Emp. and Poly. Model of β4 Mag. vs. Freq., Probe Two Band One . . . . . 166

5.31 Emp. and Poly. Model of β4 PHase vs. Freq., Probe Two Band One . . . . . 167

5.32 Emp. and Poly. Model of σ2 vs. Freq., Probe Two Band Four . . . . . . . . 167



5.33 Emp. and Poly. Model of c1 vs. Freq., Probe Three Band Two . . . . . . . . 168

5.34 Modeled LN Mean EVM vs. Freq., Probe One Band Four . . . . . . . . . . . 169

5.35 Modeled LN Mean EVM vs. Freq., Probe Four Band Three . . . . . . . . . . 169

5.36 Increase of LN Mean EVM From Emp. to Model vs. Freq., Probe 1 Band 4 . 170

5.37 Increase of LN Mean EVM From Emp. to Model vs. Freq., Probe 4 Band 3 . 171

6.1 Probe One (Lower Right) Channel Model Mag. Over Test Zone . . . . . . . 174

6.2 Probe One (Lower Right) Channel Model Phase Over Test Zone . . . . . . . 175

6.3 Probe One Channel Impulse Response at Chamber Center . . . . . . . . . . 176

6.4 Probe Two Channel Impulse Response at Chamber Center . . . . . . . . . . 177

6.5 Probe Three Channel Impulse Response at Chamber Center . . . . . . . . . 177

6.6 Probe Four Channel Impulse Response at Chamber Center . . . . . . . . . . 178

6.7 Probe One, Empirical and Polynomial Fit Spatial Correlation vs. Separation 180

6.8 Probe Two, Empirical and Polynomial Fit Spatial Correlation vs. Separation 180

6.9 Probe Three, Empirical and Polynomial Fit Spatial Correlation vs. Separation 181

6.10 Probe Four, Empirical and Polynomial Fit Spatial Correlation vs. Separation 181

6.11 Probe One, Empirical Spatial Correlation CCDFs vs. Separation . . . . . . . 182

6.12 Probe Two, Empirical Spatial Correlation CCDFs vs. Separation . . . . . . . 183

6.13 Probe Three, Empirical Spatial Correlation CCDFs vs. Separation . . . . . . 183

6.14 Probe Four, Empirical Spatial Correlation CCDFs vs. Separation . . . . . . 184

6.15 0.25 λ × 0.25 λ DUT WB Cap. Vs. DUT Center Pos. . . . . . . . . . . . . . 186

6.16 0.5 λ × 0.5 λ DUT WB Cap. Vs. DUT Center Pos. . . . . . . . . . . . . . . 187

6.17 λ × λ DUT WB Cap. Vs. DUT Center Pos. . . . . . . . . . . . . . . . . . . 187

6.18 1.5 λ × 1.5 λ DUT WB Cap. Vs. DUT Center Pos. . . . . . . . . . . . . . . 188



6.19 0.25 λ × 0.25 λ DUT WB Cap. CCDF . . . . . . . . . . . . . . . . . . . . . 189

6.20 0.5 λ × 0.5 λ DUT WB Cap. CCDF . . . . . . . . . . . . . . . . . . . . . . 189

6.21 λ × λ DUT WB Cap. CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.22 1.5 λ × 1.5 λ DUT WB Cap. CCDF . . . . . . . . . . . . . . . . . . . . . . 190

6.23 λ
4
× λ

4
DUT Channel Eigenvalue CCDF . . . . . . . . . . . . . . . . . . . . . 192

6.24 λ
2
× λ

2
DUT Channel Eigenvalue CCDF . . . . . . . . . . . . . . . . . . . . . 192

6.25 λ × λ DUT Channel Eigenvalue CCDF . . . . . . . . . . . . . . . . . . . . . 193

6.26 3λ
2
× 3λ

2
DUT Channel Eigenvalue CCDF . . . . . . . . . . . . . . . . . . . . 193



Abstract

NEAR-FIELD MIMO CHANNEL MODELING WITH APPLICATIONS TO SMALL

ANECHOIC CHAMBERS

By

Jonathan Te�t

University of New Hampshire

Demand for wireless communications is rapidly expanding, especially in areas of high-

speed communications including 4K video over wireless HDMI replacements and millimeter

wave communications. Multiple-input multiple-output (MIMO) systems leverage spatial

diversity to achieve higher capacity, helping to meet this demand for high-speed communi-

cations. The cost of consumer wireless devices can be lowered by testing in small, a�ordable

multi-antenna environments. However, there is a lack of knowledge of MIMO in the near

�eld. Near-�eld (speci�cally Fresnel region and near the Fraunhofer distance) MIMO chan-

nels de�ne the performance of these systems, therefore a robust method of near-�eld MIMO

channel modeling is needed to aid in system design and testing. The contributions of this

dissertation include a method of iteratively decomposing a sampled broadband Fresnel re-

gion and near-Fraunhofer distance SISO channel into a set of spatial functions. The channel

residual of the spatial functions was statistically analyzed to re�ne the channel estimate

model and include e�ects not modeled in selected spatial functions. A robust simulation

and measurement campaign for model veri�cation was performed in a small anechoic cham-

ber, and in turn the SISO models were combined into a MIMO channel description used

to evaluate the MIMO performance of a small anechoic chamber environment. In addition

xiii



to developing and evaluating a wideband MIMO channel model, a feasibility analysis was

performed on the ability of small MIMO-OTA anechoic test chambers to reproduce speci�c

MIMO test environments in a test zone.



CHAPTER 1

Introduction

1.1 Motivation

Recently, there has been an explosion in the demand for internet access through wireless

communications networks, including smart phones, tablets, and laptops. Applications such

as streaming video have exponentially increased the amount of data consumed by users as well

as the data rate requirements of such use. Wireless communication is a critical broadband

access strategy in this country and around the world, particularly in rural areas. The US

national broadband plan [7] has stated long-term goals including that �at least 100 million

US homes should have a�ordable access to actual download speeds of 100 Mbps and actual

upload speeds of 50 Mbps. . . The United States should have the fastest and most extensive

wireless networks of any nation. . . Every American should have a�ordable access to robust

broadband service� [7]. By 2020, some estimate that the amount of spectrum necessary to

support mobile broadband is 1,720 MHz.

In addition, improvements in spectral e�ciency and increase in the density of network

architectures will be necessary to help meet this demand. According to the 3rd Generation

Partnership Project (3GPP), from 2010 to 2025, there is a desired 1,000-fold increase in

capacity desired to meet demand, requiring, for example �three times more spectrum, six

times more spectrum e�ciency, and 56 times increased network density� [8]. The 3GPP is

on track for that level of usage growth, and is addressing this need in its Release 15 and 16

standards, which de�ne 5G [1]. Figure 1.1 illustrates this release schedule.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: 3GPP Release Timeline for 5G [1]

Evolving standards and technologies will help to meet these objectives. These standards

will utilize an increase in available spectrum whether as a primary user or opportunistic

secondary user through software-de�ned radio. They will utilize state of the art techniques

to optimize spectral e�ciency through use of schemes such as multiple input multiple output

(MIMO), massive MIMO, and multi-user (MU)-MIMO. Network densities will increase, with

cells shrinking to reduce inter-cell interference, increase signal to interference plus noise ratio

(SINR) for the communications link, and therefore increase capacity for each user.

Evolving standards that will take advantage of these techniques include 5G. According

to a white paper by The Wireless Association (CTIA) [9], 5G will be able to utilize spectrum

above 24 GHz, or millimeter wave spectrum. This will allow spectrum blocks in excess of

200 MHz, but will require extremely small cells due to the short range of propagation of

millimeter wave signals, and in addition to their inability to penetrate objects including

walls. CTIA states that the United States Federal Communications Commission (FCC) is

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 2



CHAPTER 1. INTRODUCTION

working to provide access to 10,000 MHz of new high-band spectrum for mobile broadband

in its Spectrum Frontiers proceeding. 5G will be 10 times faster and support 100 times more

devices.

5G will need to yield enhanced mobile broadband through capacity enhancement (giga-

bytes per second for applications such as 4K 3D video), support a massive internet of things

through massive connectivity (e.g. sensor networks), and support low latency and ultra-high

reliability (self-driving cars) [8].

In addition to 5G, other high-data rate applications that utilize MIMO, potentially in the

near-�eld, include millimeter wave WiFi 802.11ad (more speci�cally its extension 802.11ay),

and high de�nition video interconnects supporting resolutions up to 4K (which could replace

High-De�nition Multimedia Interface (HDMI)).

With the majority of emerging high-data rate standards utilizing MIMO, the importance

of MIMO test solutions to verify that a device under test (DUT) can operate near capacity is

critical to the goal of maximizing spectral e�ciency. Ideally, a small, a�ordable test solution

is desirable. After determining such a system is feasible, the ability to properly model such

a MIMO system, which due to its small nature will be in the near-�eld (speci�cally the

Fresnel region and near-Fraunhofer distances), is critical to calculating the capacity of the

system and measuring DUT performance. In addition, a general near-�eld MIMO channel

model can assist in the development of emerging near-�eld MIMO standards for high-data

rate communications.

1.1.1 Importance of Small Chamber MIMO Test Solutions

In an e�ort to meet the demand for high-speed wireless networking to provide support

for applications such as multimedia streaming and document sharing, multiple-antenna com-

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 3



CHAPTER 1. INTRODUCTION

munications are and will continue to be deployed. Multiple-Input Multiple-Output (MIMO)

systems employ antennas arrays that increase capacity, spectral e�ciency, and cell cover-

age [10]. MIMO systems can operate with many signaling techniques, including Bell LAbs

layered Space-Time (BLAST), Alamouti space-time code, vertical BLAST (V-BLAST) and

Turbo-BLAST; all of the techniques leverage the spatial diversity of the antenna arrays at

the transmitter and receiver [11].

Many recent and emerging standards serve to increase the adoption of MIMO technology,

including IEEE 802.11n, 802.11ac and 802.11ax (Wi-Fi), Long Term Evolution (LTE) and

LTE-Advanced (standards developed by the 3rd Generation Partnership Project (3GPP)),

and WiMAX (IEEE 802.16). These standards utilize multiple antennas in both the base

station and the mobile device. Inherently, MIMO systems are dependent on the spatial

orientation of the antennas at both ends of the links and the geometry of the antenna arrays

themselves. This spatial correlation, in addition to the multi-path fading of the wireless

channel, will impact the performance of a wireless communications link [11]. Therefore, a

simple over-the-air (OTA) test which does not take into consideration this correlation or

fading is not su�cient for validating the throughput performance of a multiple antenna

system. The development and deployment of next generation devices greatly depends on the

ability to test and analyze the devices under realistic conditions; it is for this purpose that

MIMO-OTA testing platforms are being developed.

Current MIMO-OTA testing platforms such as large anechoic chambers are expensive,

running in excess of one million USD. Recent research has demonstrated that, for a reduced

set of standard MIMO-OTA channels, a small anechoic chamber with a reduced array of

probe antennas can be utilized. Such a small chamber can cost in the range of 200 thousand

USD, a signi�cant savings over the large chamber solutions. This can result in smaller
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development costs for electronics manufacturers, which could serve to lower the cost of next-

generation wireless devices for consumers, which could in turn assist in wider adoption of

these technologies. A small chamber is also more portable, allowing it to be easily transported

into a building through doorways, rather than assembled in a single location in a dedicated

room without the option of relocating.

1.1.2 Importance of Near-Field MIMO Channel Models

High-data-rate near-�eld MIMO applications include LTE, LTE-A ,millimeter wave sys-

tems such as 5G and 802.11ad, and HDMI replacements. All of these applications either can

be tested in the near-�eld (speci�cally the Fresnel region and near-Fraunhofer distances) or

operate in the near-�eld, and in either case a full characterization of the wireless commu-

nications channel is critical for de�ning system performance limits when developing a new

technology and creating test metrics for throughput testing of an existing technology.

An e�ort to characterize a near-�eld MIMO communications channel must include an

understanding of the propagation between the transmitter and receiver, speci�cally, the

propagation between each transmitting antenna, and each receiving antenna. This propaga-

tion between antennas is de�ned by electromagnetic theory, and can be modeled using �elds

in the environment of the transmit and receive antennas (including near-�eld aspects of �eld

equations). In addition, interactions with the environment that would a�ect this �eld must

be accounted for, including re�ections from environmental objects. It is extremely important

to model as many relevant components of the environment as possible (making the model

accurate), while keeping the model general enough to apply to other similar but not iden-

tical scenarios (making a robust model). A useful model framework should also allow for

re�nement (thus increasing accuracy) using real-world measurements to capture modeling
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errors and phenomena that may not have been included in the model. An accurate and

robust model will have the largest impact on, and bene�t for, the �eld of near-�eld MIMO

communications, and that impact and bene�t are the motivations of this work.

1.2 Contributions, and Outline

The contributions of the research presented herein are:

• demonstrating the ability of a cost-e�ective small anechoic chamber for MIMO-OTA

testing to reproduce speci�ed electric �elds corresponding to standardized MIMO-OTA

test cases [12]. This work showed the di�culty of recreating a standard MIMO test

environment in a small test chamber; however for certain con�gurations of chamber

size, antenna number and spacing, test zone size, and frequency, it was demonstrated

that such an environment can be created in a small test chamber.

• channel models and the corresponding capacity between MIMO arrays located in the

near-�eld. This framework utilizes electric �eld equations for antennas which include

terms that are normally negligible in the far-�eld.

In addition, Fig. 1.2 includes a �owchart for the contributions of chapters 4 and 5. This

�ow chart will be used as a guide through these chapters. The additional contributions pre-

sented on the �owchart (plus an additional contribution related to MIMO channel analysis)

are:

• A generalized numerical model describing the channel between a log periodic antenna

and a dipole, each of arbitrary spacing and orientation, to calculate the channel vs.

receiver dipole position in a test zone.
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Figure 1.2: Contribution Flowchart for Chapters 4 and 5

• A method of using both point source �elds and plane waves as joint spatial attribute

functions (SAFs) to accurately describe the numerical channel model or a measured

channel as a concise sum of functions with acceptable error.

• A method of �tting point source functions to a numerical or measured channel using

a phase correlation maximization search, then use two-dimensional Fourier analysis to

re�ne the approximation with plane waves.

• Combining methods of Complex Kriging, Geostatistical Regression and Geostatistical

Kriging to statistically model the residual of the SAF function approximation to fur-

ther re�ne the channel estimate. Applied this method to an extensive measurement

campaign performed in a small anechoic chamber.

• An extension of the narrowband SAF plus residual model to a wideband channel model,

utilizing frequency-scaled SAFs and polynomial coe�cient and parameter models. This
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yields a wideband SISO channel model of the small anechoic chamber which completely

describes the channel as a mathematical function of frequency and receiver position in

a test zone.

• An application of the small anechoic chamber wideband SISO channel models to wide-

band MIMO channel model, and an extensive analysis of the MIMO channel properties

of the modeled small anechoic chamber.

This proposal is organized as follows:

• Chapter 2 presents fundamental background information on near-�eld electromagnetics

and MIMO topics, anechoic chambers, and Kriging, as well as an overview of recent

literature in this �eld. Also included is a preliminary investigation into simple Hertzian

dipole near-�eld MIMO channel models, and

• Chapter 3 presents a computational electromagnetic analysis of the feasibility of small

anechoic chambers for MIMO-OTA �eld synthesis.

• Chapter 4 presents a numerical near-�eld free-space channel model and a method for

selecting and �tting a set of mathematical spatial attribute functions to a measurement

set or sampled numerical model. This results in a narrowband functional model of the

channel.

• Chapter 5 presents two extentions of the narrowband functional channel model, one

re�ning the model by using a statistically-informed estimate of an additive residual,

and the other extending the model to a wideband model. These model extensions are
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applied to an extensive small chamber measurement campaign data set and veri�ed for

accuracy.

• Chapter 6 presents an extensive application of the small chamber channel model to a

MIMO channel analysis of the small chamber, providing insight as to the performance

of MIMO systems in a small anechoic chamber.
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CHAPTER 2

Background

This chapter contains all relevant background to subsequent contributions. Fundamental

concepts from the �eld of wireless communications relevant to the research performed for

this dissertation are outlined. A literature review containing recent, relevant research in the

areas of small anechoic chambers and near-�eld MIMO channel modeling will be performed.

A section of preliminary investigations is included to show our initial work and analysis that

preceded the contributions in this dissertation.

2.1 Fundamental Concepts

In this section, fundamental concepts in single-input single-output (SISO) and MIMO

wireless communications, anechoic chamber theory, and antennas and electric �elds in the

near-�eld will be reviewed.

2.1.1 SISO channels

This subsection will serve as a quick review of fundamentals of SISO wireless channels,

consisting of a single transmitting antenna and single receive antenna. Wireless channels

are linear in nature; if we assume the channel to be time-invariant (does not change over

time), causal (outputs can only happen concurrent with or after inputs), and time-dispersive

(input energy is spread out over time at the output), we can describe a relationship between

its input and output as an impulse response h in the time domain, or a transfer function

H in the frequency domain [11]. If the wireless channel is truly time-invariant, then H is

10
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completely deterministic.

Wireless channels in most real-world situations are time-varying and can be modeled

as such with a time-dependent transfer function T(t,f). This is due to motion in a real-

world environment, with various re�ections of the signal bouncing o� and scattering from

moving objects in the environment and adding constantly-varying copies of the signal con-

structively or destructively at the receiver. This phenomenon is known as fading, and the

channel between the transmitter and receiver can change rapidly (known as fast fading) or

slowly (known as slow fading). Unfortunately, this makes both analysis and communications

systems much more complex. However if the channel changes slowly in time in relation to

independent channel accesses (and the channel is su�ciently low-bandwidth), i.e. if the chan-

nel exhibits slow fading, it can be modeled as time-invariant (i.e. H can be used in lieu of

T ) for analysis. In other words, in this scenario the channel has a su�ciently long coherence

time for the utilized communications scheme [11]. For each access of the channel, however,

H can have di�erent random values in this scenario. If H is independent and identically

distributed (I.I.D.) for each channel access, the channel distribution can be characterized

and modelled as a random variable. (Characterization and modeling of channels where the

coherence time is short relative to the communications system (i.e. fast fading) is possible,

but is outside the scope of this dissertation.)

If a channel is considered narrowband (ideally modeled as a single sinusoid at a frequency

f0), the impulse response h(t) becomes valid at a single frequency H(f0) in the frequency

domain, and it becomes a single complex constant h, or complex gain. This constant can

be multiplied by the transmitted signal in either the frequency domain or time domain to

produce the received signal [11]. This complex constant h will a�ect the amplitude and phase

of the narrowband signal. Communications systems such as orthogonal frequency division
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multiplexing (OFDM), where a wideband channel is divided into independent narrowband

orthogonal sinusoidal channels (subcarriers) with amplitude and phase representing data in

symbols of duration less than the coherence time, are designed in such a way that can utilize

independent channel estimations h for each subcarrier and symbol period(s) [13].

In addition to the e�ect of the complex channel impulse response, noise is added to the

received signal in a channel model, usually modeled as complex additive white Gaussian

noise (AWGN) (i.e. both the real and imaginary components of the noise follow a Gaussian

distribution, and are spectrally uniform) [11]. Thus, a narrowband SISO channel can be

modeled as:

y(t) = h · x(t) + n(t) (2.1)

2.1.2 MIMO

If both the transmitter and receiver utilize multiple antennas, the system becomes multiple-

input multiple-output (MIMO). Each pair of transmit and receive antennas is assumed to

represent an independent channel that can be modeled as in Eq. 2.1. If we consider the

transmitted signal as a vector ~x of length Nt (the number of transmit antennas), the re-

ceived signal as a vector ~y of length Nr, an impulse response between TX antenna i and RX

antenna j as hji, and an AWGN vector ~n of length Nr, then the vectors ~x and ~y can be

related by the following equation:

~y(t) = H ~x(t) + ~n(t) (2.2)

where H, the Nr × Nt channel matrix, consists of elements hji, the complex gain between

each pair of transmit and receive antennas [11]. This can be described as a vector Gaussian
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channel [13].

In short, each individual received signal is the sum of a gain-adjusted and phase-shifted

version of each and every transmitted signal plus some additive AWGN. The channel matrix,

determined by environment, determines just how much of each transmitted signal is received

at each antenna. The greater the distance between antennas in the transmit array, and

the greater the distance in antennas in the receive array, the greater the variation in the

combination of signals received at each antenna at the receiver. This spacing (which can be

adjusted and optimized to meet the needs of communications systems), provides a spatial

dimension to the system, or in other words, allows for spatial multiplexing of multiple data

streams between the transmitter and receiver [13]. In certain environments (i.e. certain

channel matrix formulations and distributions), utilizing MIMO can signi�cantly increase

the capacity of a communications link over a similar SISO link.

Channel Matrix Analysis and Decomposition

To evaluate the bene�ts of MIMO, an analysis of the channel matrix H is performed. H

is a matrix that in the context of Eq. 2.2 can be considered a linear transformation between

the transmit and receive vectors. A linear transformation can be decomposed using singular

value decomposition (SVD) into a product of three matrices: a rotation matrix U (unitary

matrix, i.e. the Frobenius norm of this matrix equals 1), a scaling matrix Λ (diagonal

matrix consisting of the singular values of H), and another rotation matrix V H (another

unitary matrix; H represents the Hermetian operator, i.e. conjugate transpose [13]). If we

pre-multiply the transmit signal vector ~x by V (x̃(t)), and post-multiply the received signal

vector ~y (and thus also the noise vector) by UH (ỹ(t) and ñ(t)), (which preserves the norm,
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and thus power values, of ~x, ~y, and ~n(t)), then the channel can be rewritten as [13]:

ỹ(t) = Λx̃(t) + ñ(t) (2.3)

Which, due to the diagonal matrix Λ can be written as a set of parallel Gaussian chan-

nels:

ỹi = λix̃i + ñi (2.4)

where i is the eigenvalue matrix index ii, of which there are RH values (rank of H). The

power of the transmitted signal x̃i is equal to Pi, and the received signal power is thus Pi ·λ2i .

(The sum of all Pi must equal the total transmitted power Pt.) The power of the noise at

the receiver is N0. [13] The signal to noise ratio (SNR) of each parallel Gaussian channel,

i.e. the signal power received divided by the noise power received, is:

Pi ∗ λ2i
N0

(2.5)

General MIMO Capacity

From information theory, the Shannon capacity of a SISO channel with normalized band-

width is equal to C = log2 (1 + SNR). Using the derived expression for SNR, the capacity

for each parallel channel becomes:

Ci = log2

(
1 +

Pi · λ2i
N0

)
(2.6)
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The total MIMO channel capacity is equal to:

C =
RH∑
i=1

log2

(
1 +

Pi · λ2i
N0

)
(2.7)

This formula for instantaneous narrowband MIMO capacity was �rst introduced by Fos-

chini and Gans [14]. For a wideband MIMO channel, the wideband capacity becomes an

average of narrowband capacities [11]. The wideband MIMO channel is sampled at regular

frequencies ∆f for some bandwidthW to yield a series of narrowband channel matrices H[f ],

each of which is used in the narrowband capacity formula, and averaged over the range of

frequencies sampled (2.8) [11]:

CX =
1

W

F∑
f=1

log2

[
det

(
I +

ρ

MTx

H̃[f ]H̃H [f ]
)]

∆f (2.8)

where F is the number of frequencies for which H is sampled, H is the Hermitian transpose

operator, ρ is the linear transmit SNR, MTx is the number of transmit (probe) antennas,

and I is the identity matrix. H̃ is the normalized channel matrix (2.9):

H̃[f ] =
1√√√√ 1

MRxMTxF

MRx∑
i=1

MTx∑
j=1

F∑
k=1

|hi,j,k|2
H[f ] (2.9)

where MRx is the number of receiver antennas, and hi,j,k is the (i, j)th element of H[f(k)].

Essentially, this is normalizing H[f ] by the average element magnitude of H[f ] across all

frequencies.
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Water�lling Power Allocation and Capacity

The optimal distribution of power for each independent channel, P ∗i , can be determined

using a water�lling algorithm. Water�lling can occur if the transmitter has knowledge of the

channel matrix H. The transmitter determines the eigenvalues, ~λ2, of the channel matrix.

Then the transmitter initializes a variable µ, which is iteratively updated and will be used

to calculate the optimal power allocation.

µ = min
(
N0

~λ2

)
+

Pt
RH

(2.10)

Another variable p gets initialized, which is the sum of allocated power given the current

value of µ:

p =
RH∑
n=1

max

(
µ− N0

~λ2n
, 0

)
(2.11)

the following steps are performed iteratively until the di�erence between Pt and p is arbi-

trarily small:

µ = µ+
Pt − p
RH

(2.12)

p =
RH∑
n=1

max

(
µ− N0

~λ2n
, 0

)
(2.13)

This iteratively adds power to channels with high eigenvalues �rst, then progressively raises

the level of µ thus adding power to subcarriers with su�ciently high eigenvalues relative to

µ until all power has been allocated. Once the value of µ is determined that allocates all
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power, power is optimally assigned to independent channels as [13]:

~P ∗ = max
(

0, µ− N0

~λ2

)
(2.14)

MIMO Channel Metrics

Two metrics of the channel matrix can indicate how good a channel is for MIMO commu-

nication. First, the rank RH of the channel matrix, or the number of non-zero eigenvalues,

indicates the number of spatial degrees of freedom. If a channel matrix is full-rank, then

it maximizes the dimension of the MIMO channel for the given system with Nt transmit-

ting antennas and Nr receiving antennas [13]. Second, the condition number of the ma-

trix γ = max (~λ)

min (~λ)
, indicates how spread out the singular values of the channel matrix are. If

the singular values are uniformly distributed, then the condition number is equal to 1 and

the matrix is considered well-conditioned. The closer the condition number gets to 1, the

larger the capacity in high SNR conditions [13].

Several properties play into the de�nition and characterization of a MIMO channel. De-

terministic (static) properties that contribute to the channel include transmit and receive

array orientation (often used are uniform linear arrays (ULA) for analysis) and antenna spac-

ing, number of resolvable paths in the angular domain (and whether one of these paths is

line of sight) [13]. Analytical methods to determine the rank and condition number of these

deterministic channels is well-studied, particularly in the far-�eld. General trends reveal

that small antenna separation in both transmit and receive arrays in the line-of-sight case

yield no spatial degree of freedom gain, large antenna separation in the transmit array or

receive array provide a spatial degree of freedom gain (even in the line-of-sight case), and

multipath channels with large angular separation between multipath components provides

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 17



CHAPTER 2. BACKGROUND

a spatial degree of freedom gain even with low separation in the transmit array or receive

array [13].

Stochastic MIMO Channels

As discussed previously, the channel matrix may be stochastic rather than deterministic

due to the presence of a fading channel. The standard assumptions in these stochastic models

are that the channel exhibits su�cient coherence time such that discrete samplings of the

random process (i.e. constant multiplicative complex matrix entries) can be made, and that

each entry of the matrix is I.I.D. The ability of a stochastic channel matrix to represent a

rich multipath environment can be analyzed through transformation of the channel matrix

into an angular domain representation (i.e. pre- and post-multiplying the channel matrix by

unitary matrices constructed from basis vectors for the transmit and receive signal spaces,

or in other words Inverse Discrete Fourier Transform (IDFT) matrices). The elements of

the angular domain representation matrix correspond to transmitter and receiver angular

bins corresponding to direction of departure and direction of arrival respectively, i.e. one

resolvable path. Elements of this matrix above a certain threshold indicate that the channel

has at least one multipath component along this resolvable path. Assume that elements

below the de�ned threshold are zero. The rank of the angular channel matrix can be de�ned

as the minimum between the number of non-zero rows and non-zero columns [13].

Rayleigh Fading

One common stochastic MIMO channel model is the I.I.D. Rayleigh fading model, where

each element in the channel matrix is I.I.D. circularly-symmetric complex Gaussian. The

distribution of the magnitude of this complex random variable (the square root of sum of

the squares of the real and imaginary components) follows a Rayleigh distribution. If we
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investigate the angular domain channel matrix of such a process, we see that the Rayleigh

channel has I.I.D. Gaussian distribution in the angular domain as well, indicating that the

expected value in every resolvable path, i.e. the expected value of a Rayleigh random variable

(which is non-zero by de�nition) should be above the threshold. This means that every

resolvable path is utilized between the transmitter and receiver, and the simulated channel

is richly scattered [13]. It should be noted that because each of the two Gaussian processes

that constitute the real and imaginary parts of the channel matrix are zero mean, there is

no dominant (line-of-sight) path between the transmitter and receiver.

Rician Fading

In the case where a line of sight path can be modeled as dominant, but there is also a

richly-scattered channel present, a Rician fading model is appropriate. In essence, Rician

fading is just Rayleigh fading, except the real and imaginary Gaussian random variable

components are not zero-mean, with the real and complex component means equaling the

complex gain of the line-of-sight path between transmitter and receiver. For a Rician channel

model, this complex line-of-sight gain must be determined for each transmit-receive antenna

pair either analytically or experimentally. Then, the ratio of energy in the line-of-sight path

to the energy in the scattered paths κ must be determined [15]. The resulting channel matrix

entry is the following assuming a variance of σ2 = hijLOS :

hij =

√
κ

κ+ 1
hijLOS +

√
1

κ+ 1
CN (0, |hijLOS |

2) (2.15)

where CN is the complex normal distribution. It should be noted that when κ is zero, the

channel matrix becomes Rayleigh, and if κ approaches in�nity, the channel matrix becomes

deterministic with hij = hijLOS .
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MIMO Channel Clusters

Realistic MIMO channel models involve one or multiple multipath clusters impinging on

a receiving array. Each multipath cluster is centered around a central angle of arrival, and

consists of numerous multipath elements, each of which follows a statistical distribution in

time (delay τ), azimuth angle φ (Power Azimuthal Spread (PAS)), and elevation angle θ.

Each multipath component within a cluster is selected from a fading distribution, which is

correlated to the distributions in time and angle [11]. With a set of randomly generated

multipath components following these distributions, a channel matrix H can be generated

from the sum of their components. Several standardized MIMO channel models have been

developed through the modeling of multipath clusters, including Saleh-Valenzuela, Extended

Saleh-Valenzuela, COST 273, Random Cluster Model (RCM), and others [11].

Mutual Coupling at the Transmitter and Receiver

Mutual coupling between elements of the transmitter can have an e�ect on the MIMO

system capacity. The relation between the source voltage ~vs and terminal (antenna) voltage

~v is [16]:

ZT = ZT (ZT + ZS)−1 (2.16)

~v = ZT ~vs (2.17)

where ZS is the diagonal matrix of N source impedances and ZT is the open-circuit, Nt port

transfer impedance matrix at the transmitting end. Therefore ZT in 2.16 becomes part of

the channel used in capacity analysis, i.e. ~y = HZT~x.

Mutual coupling between elements at the receiver can also have an e�ect on MIMO system
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capacity [17]. The matrix relation (ZR) between the voltage induced by the antennas without

mutual coupling (HZT~x) and with mutual coupling (~y) is:

~y =



1 −Z1,2
R

ZL1
· · · −Z1,N−1

R

ZL1
−Z1,N

R

ZL1

−Z2,1
R

ZL2
1 · · · −Z2,N−1

R

ZL2
−Z2,N

R

ZL2

...
...

. . .
...

...

− ZN−1,1
R

ZL(N−1)

− ZN−1,2
R

ZL(N−1)

· · · 1 − ZN−1,N
R

ZL(N−1)

−ZN,1R

ZLN
−ZN,2R

ZLN
· · · −ZN,N−1

R

ZLN
1


HZT~x = ZRHZT~x (2.18)

where ZLn is the load impedance of receiver port n, and Zm,n
R is the mutual impedance

at the receiver between ports m and n. The resulting channel matrix including mutual

coupling HM , which can be used in subsequent capacity analysis (as described in 2.1.2), is

HM = ZRHZT [2].

2.1.3 Near-Field Topics and Mutual Coupling

In the following subsection, we discuss the distinction between near- and far-�eld, and

properties of mutual coupling.

Near-�eld Vs. Far Field Ranges

An antenna radiating several modes has three regions of space de�ned in terms of

wavenumber k = 2π
λ
, the radius of the minimum sphere of the antenna r0, and N = [kr] +n1

where r is the radius from the center of the antenna, the brackets indicate the largest integer

smaller than or equal to kr, and n1 is an integer which depends on the accuracy desired for

the system, which can be equal to 5 or less for small values of kr [18]. The three ranges of
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space are evanescent (r0 ≤ r ≤ N/k), Fresnel region (near �eld) (N/k ≤ r ≤ 4N2/πk)),

and Fraunhofer region (far �eld) (4N2/πk ≤ r ≤ ∞). It should be noted that the Rayleigh

distance R (the boundary between near and far �elds), for a source with minimum sphere of

diameter D = 2r0, is often de�ned as R = 2D2

λ
. This distance is approximate, and making

far-�eld assumptions near the Rayleigh distance can still produce signi�cant phase error.

Additional Mutual Coupling Topics

Mutual coupling e�ects between closely-spaced linear antennas can be modeled using

electric and magnetic �elds produced at near-distances, which can be obtained by deter-

mining the magnetic vector potential A. In [19], sections 23.1 and 23.2 outline a rigorous

mathematical analysis using sinusoidal current assumptions for determining the near �eld for

linear antenna (e.g. general dipole antennas) separations greater than λ
10
. This antenna sep-

aration is more than su�cient for use in our research. Mutual impedance and self-impedance

are calculated in section 23.3 using equations relating induced open circuit voltage to inci-

dent electric �eld and current. Section 23.5 utilizes the mutual/self impedance matrix along

with driving voltages for each antenna in an array to determine the input currents of each

antenna, which along with the sinusoidal assumption that de�nes each element current I(z),

can be used to de�ne the electric and magnetic �elds produced by the array [19].

2.2 Literature Review

In this section, we reviewed recent literature related to our research e�orts. A summary of

this literature was included here to frame the context of our research, and to present the origin

and evolution of some of the techniques and methods used in our research. Our literature

review encompassed the areas of MIMO-OTA testing and near-�eld MIMO channels and
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corresponding capacity.

2.2.1 MIMO-OTA Testing

This subsection reviews literature on MIMO-OTA testing topics. This literature will

help place the contributions of Chapter 3 of this document in context, and help the reader

understand the state of the art in MIMO-OTA testing. Topics of the literature reviewed

in this subsection include MIMO-OTA chamber types, MIMO-OTA test system calibration,

standard channel emulation in anechoic chambers, full-ring MIMO-OTA plane wave �eld

synthesis, and partial-ring MIMO-OTA �eld synthesis.

MIMO-OTA Chamber Types

There are several di�erent proposed MIMO-OTA systems in the literature: full ring [20,

21] and full-sphere, partial ring [22], and reverberation chamber [23]. All of these systems

are designed to emulate the spatial distribution of power that would occur in a multipath

environment. The spatial distribution of power is dependent on multiple incident waves

of di�erent power levels and angles of arrival. The incident power as a function of angle

in a multipath environment can be modeled as multiple clusters, each exhibiting a Lapla-

cian Power Azimuthal Spectrum (PAS). This angular dependence of the incident power is

important as the achievable data rates are inherently tied to the orientation of the antennas.

The full-ring system includes evenly-spaced MIMO-OTA probes in a circle around the

device-under-test (DUT) [21]. This con�guration enables the creation of multiple clusters

of energy impinging on the DUT. The generation of multiple clusters makes it possible to

test many di�erent wireless environments, but at the cost of a large chamber with a high

number of probes and hardware. E�orts to shrink a full-ring system into a small chamber

with ring radius of 0.5m have been shown to be successful in [24], however these e�orts have
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dealt with target zone correlation error rather than accuracy of �eld synthesis.

The reverberation chamber is an anechoic chamber that has re�ectors that redirect the

signals to distribute the power over di�erent angles [23]. These facilities are also large and

the control of the power distribution is limited. Finally, the small chamber implementation

considered for our work uses a subset of antennas with respect to the full ring to synthesize

a single cluster, or partial ring. The size and fewer number of probe antennas of the partial

ring small chamber makes it more cost e�ective than its full-sized or full-ring counterpart,

but the number of wireless environments that can be generated is limited [22]. While a single

cluster does not provide the spatial diversity that results in the highest MIMO data rates,

it does provide a standardized, realistic, and repeatable environment in which to perform

MIMO-OTA testing [25].

Through simulation of a single cluster with Laplacian PAS �eld, it has been shown

that a low number of probes can be used to generate a desired electromagnetic �eld in a

test zone [25]. Previous work, however, only focuses on minimizing the number of probes,

and does not focus on constraining these probes to a small chamber. This previous work

therefore does not investigate parameters such as chamber dimensions, antenna arrangement,

or frequency.

MIMO-OTA Test System Calibration

A modi�ed test zone �eld compensation technique for calibrating multi-probe antenna

measurement systems was presented in [26]. This method yielded performance similar to

traditional calibration methods and can be used in environments with high levels of sig-

nal re�ections. This technique was expanded in [27], allowing for full 3-D antenna pattern

measurements without an anechoic measuring environment. Small-antenna pattern mea-
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surements can be made in non-anechoic environments where multi-re�ection amplitudes are

small relative to primary re�ections. This technique can also be used to calibrate out the

re�ections caused by multiple antennas in an anechoic chamber MIMO-OTA test system.

These methods were extended in [28] to multipath environment synthesis in a spherical test

zone with a limited number of probes. Arbitrary electromagnetic environments can be syn-

thesized with this method (including near-�eld e�ects), including near-�eld environments,

due to spherical-wave theory. Spherical wave theory will be outlined in Chapter 3, in section

3.1.1.

Standard Channel Emulation in Anechoic Chambers

The literature has several papers exploring MIMO channel emulation based on various

standards in full-ring anechoic chambers, speci�cally the e�ect of many chamber parameters

(mostly probe antenna con�gurations) on numerous channel emulation metrics. The capa-

bility to recreate required radio propagation channel characteristics including power delay

pro�le, Doppler spectrum, and spatial auto-correlation in models such as 3GPP SCM, SCME

and IEEE 802.11n in a full-ring MIMO-OTA anechoic chamber test zone was investigated

in [29]. A relation between number of probe antennas and test zone size for accurate spatial

channel emulation was established in this work. Considerations of probe antenna spacing,

radiation patterns, and mutual coupling and their e�ect on channel emulation accuracy were

further investigated in [30]. The antenna correlation and throughput performance of three

channel models were investigated for three antenna separation con�gurations in this work.

An investigation into the ratio of probe ring radius to the test zone radius and its e�ect on

channel emulation accuracy requirements at various frequencies was investigated in [31].

In addition to probe antenna con�guration, the e�ects of device under test con�guration
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on MIMO-OTA full-ring test system requirements have been investigated in the literature.

The impact of device under test antenna patterns (speci�cally variation in directivity) on the

number of probe antennas necessary for plane wave synthesis (and equivalent induced voltage

(EIV) technique, a technique with almost identical results for large MIMO-OTA setups) and

prefaded signal synthesis was performed in [32]. This impact was measured using metrics of

received voltage and spatial correlation accuracy. Simulation and measurement showed that

higher variation in directivity requires a higher number of probes for comparable accuracy.

Beyond full-ring con�gurations, some papers have explored 3-dimensional channel emu-

lation. An investigation into 3-D spatial correlation channel model emulation in a spherical

probe array MIMO-OTA test setup was performed in [33]. A framework to emulate any

spherical incoming power spectrum, with optimal emulation accuracy and low computa-

tional complexity, was presented in this work.

Two methods of MIMO-OTA channel emulation exist in the literature, prefaded signal

synthesis (which relies on correlation within the test zone) and plane wave synthesis, both

of which apply weights to the signal applied to each probe antenna. In [34], mapping of

channel models onto MIMO-OTA probe antennas, speci�cally through generation of complex

antenna coe�cients through prefaded signal synthesis and plane wave synthesis, is explored.

Evaluation and veri�cation through simulation was performed, with the bene�ts of each of

the two antenna coe�cient generation methods analyzed. The cases where each would be

appropriate were outlined. Plane wave synthesis methods were determined to be superior for

the scenario of a limited antenna ring radius, and therefore would be the antenna coe�cient

method of choice for a small chamber environment, the focus of our work.
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Full-ring MIMO-OTA Plane Wave Field Synthesis

Several papers in the literature investigate plane wave synthesis methods of channel

emulation for MIMO-OTA systems. A review of existing investigations on MIMO-OTA test

methodology is performed in [35], and rules for the required number of probes as a function of

test zone size in wavelength for a desired uncertainty or accuracy in test zone �eld synthesis

are presented. The accuracy in test zone �eld synthesis is de�ned in terms of deviation from a

target electric �eld. Probe orientation error and location mismatch and their e�ect on plane

wave synthesis of an electric �eld in a MIMO-OTA full-ring test zone are considered in [36].

A �nite-di�erence time-domain (FDTD) simulation was used to determine the performance

deterioration caused by these errors. It was shown that radial location mismatch error is

found to have the greatest e�ect on performance.

The su�ciency and advantage of a full-ring system over a full-sphere con�guration has

been investigated in the literature. In [37], a 2-D circular array (full-ring) for �eld synthesis

in MIMO-OTA testing is investigated in terms of plane wave synthesis analysis, and a case

for a 2-D full-ring test system over a 3-D full-sphere test system is made. Many channels

and channel models have constrained PAS to the horizontal plane. The use of 2-D systems

provides a channel emulation system cost- and complexity-reduction.

Channel emulation through the synthesis of multiple simultaneous plane waves in a test

zone is possible (including cluster models formed through the sum of numerous plane waves

following an angular spectrum), and papers have investigated the requirements of a full-

ring system to synthesize such a �eld. A synthesis and measurement of single- and multi-

plane wave �elds with multiple angle of arrival (AoA) and weightings is performed in [38],

with phase and power deviations of the synthesized �eld investigated. It is shown that the
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superposition of multiple plane waves with di�erent AoA can cause deep fading, which can

cause phase jumping and inaccuracies in measurements.

Partial-ring MIMO-OTA Field Synthesis

There has been some work in the literature regarding partial-ring anechoic chamber

MIMO-OTA systems. In [25], the number of probe antennas required for generating a single

Laplacian PAS cluster for varying angular spreads and test zone sizes in an anechoic chamber

is established. A Laplacian cluster target �eld to model this channel is generated through the

sampling of a Laplacian distribution to determine the amplitude of a series of plane waves

from varying AoA, each with random, uniformly-distributed phase. This paper investigated

partial ring systems, including probe antenna sector angle and number of antennas, and their

e�ect on synthesized �eld accuracy. This paper is the basis of much of our small chamber

work presented in this proposal. It, however, does not discuss how non-ideal e�ects such as

re�ection contributions in a small chamber would a�ect the �eld synthesis accuracy, which

is a focus of our work.

2.2.2 Near-Field MIMO Channels and Capacity

This subsection reviewed literature near-�eld MIMO channels and capacity. This litera-

ture helps to place the work in Chapters 4 through 6 of this document in context, and helps

the reader understand the state of the art in near-�eld MIMO channel modeling. Topics in-

cluded in this subsection include short-range MIMO channels, near-�eld scatterers in MIMO

systems, near-�eld MIMO channel modeling, and near-�eld MIMO capacity improvement.
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Short-Range MIMO Channels

Short-range MIMO communications have been described in the literature for over a

decade, with papers going back to at least 2005 found in a literature search [39]. Such

systems are mostly at frequencies in excess of 6 GHz, and are often in the millimeter wave

range. Due to the high frequencies involved in this type of communication, the term `short

range' may or may not actually be in the near �eld. Early work in this area in [39] describes

the use of a `spherical-wave model' for analysis of arrays with separation distance in the near-

�eld. This analysis, however, turns out to be a spherical-geometry approximation using a 1
r

line-of-sight path loss approximation based on inter-element separation distance rather than

inter-array separation distance, and is thus a far-�eld approximation of a near-�eld channel

rather than a true spherical-wave analysis in the typical sense. This work shows that using

this approximation produces a more accurate estimation of capacity than assuming a plane

wave (i.e. �at wave front) impinging on the entirety of the receive array.

Essentially all papers reviewed in this area utilize the same far-�eld line-of-sight path loss

assumptions for capacity analysis [40�42]. Also, these papers note that the close spacing of

corresponding antenna elements at the transmitter and receiver result in a strong line-of-sight

path, and relatively low interference from neighboring transmit elements, thus producing a

series of almost parallel data streams without multipath components, with this assumption

being especially valid at higher frequencies. In [40] (and to a less rigorous extent in [41]),

optimal element spacing was investigated and veri�ed through measurement. In [42], a short-

range 2 × 2 ultra-wideband MIMO system is shown to have double the capacity of a SISO

system with the same characteristics, indicating that a parallel-stream assumption for the

ideal case of perfect array alignment is valid.
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Near-Field Scatterers in MIMO Systems

A couple papers were encountered that modeled the e�ect of near-�eld scatterers near

a MIMO array on capacity. One paper, [43], discussed the e�ect of near-�eld scatterers on

the mutual coupling of a MIMO antenna array and the corresponding e�ect on channel and

capacity. This paper modi�es a previously proposed model for mutual coupling for MIMO

systems to include and characterize the e�ect of near-�eld scatterers. This modi�cation is

validated, then used to accurately obtain correlation properties between antenna elements,

and as a result measure the e�ect on system capacity. Another paper, [44], investigated

through modeling the e�ects of the equipment case and human user on a MIMO system in

a handset.

Near-Field MIMO Channel Modeling

A small number of papers were found which modeled the near-�eld MIMO channel in a 2×

2 system where each array consisted of two elements utilizing some method of orthogonality.

The �rst set of these papers utilized a small electric dipole and a small magnetic dipole

in each array. In [2], the 2 × 2 system with a short electric dipole and small solenoidal

loop (Figure 2.1) is analyzed using the assumption that each element produces a TM10 and

TE10 mode respectively (Figure 2.2), which are orthogonal. An equivalent circuit diagram is

presented in Fig. 2.3. Combining spherical wave propagation of each element and coupling

matrices at the transmitter and receiver, the e�ective channel matrix is calculated and near-

�eld MIMO capacity is determined.

An almost identical approach involving a pair of electric and magnetic dipoles at the

transmitter and receiver is outlined in [45], though this paper neglects the mutual coupling

of the transmit and receive arrays, and lacks the mathematical rigor of [2], but includes an
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Figure 2.1: 2 Element Dipole and Loop Antenna Array [2]

Figure 2.2: Near-Field 2× 2 MIMO Example [2]

indoor measurement campaign at 1 MHz comparing the ratio of MIMO capacity to SISO

capacity.

The second type of paper found analyzing near-�eld MIMO was one utilizing orthogonal

polarizations of two electric dipoles at both the transmitter and receiver. In [46], the au-
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Figure 2.3: Equivalent Circuit for Near-Field MIMO System [2]

thors of which also wrote [2], uses an almost point-for-point identical analysis in this paper,

with every pair of antennas using a TM10 mode this time. All other aspects of analysis are

identical, including the mutual coupling formulations, equivalent circuit description, matrix

equations, etc. While this work is similar to the work presented in the Preliminary Inves-

tigations section of this dissertation chapter, there are three distinct di�erences. First, the

dipoles modeled in our analysis are parallel and co-planar, and thus co-polarized and not

orthogonally polarized. Second, we compare near-�eld to far-�eld capacity utilizing a nor-

malized channel, whereas [46] does not normalize and only o�ers capacity values for a small

range of near-�eld distances. Third, our formulation utilizes the Hertzian dipole equation

which encapsulates all propagation modes, while this paper utilizes a single mode spherical

mode approximation of the electric �eld, and thus our model is more robust. In short, our

preliminary research could be considered more comprehensive and extensible than that in

[46].
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Near-Field MIMO Capacity Improvement

Methods to increase the capacity of near-�eld MIMO have been proposed in the literature.

One paper [3] proposes a structure at both the transmit and receive antenna arrays consisting

of a back re�ector and two side re�ectors (Fig. 2.4), and analyzes capacity through FDTD

simulation, as shown in Fig. 2.5. This method increases the norm and decreases the condition

number of the channel matrix, thus increasing channel capacity.

Figure 2.4: Near-Field MIMO Array Re�ector [3]

Figure 2.5: FDTD Near-Field MIMO Array Simulation [3]

Another paper (dissertation [47]) proposes the use of use of two-element dipole arrays

(with separation determining the element's half power beam width(HPBW)) as a single
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element in a multi-element transmit array, with this dual-dipole array forming a �beam�

directed at the corresponding element of the receive array. This con�guration almost creates

an independent, parallel connection between each pair of antennas, similar to the concept of

Short Range MIMO previously described. An optimization of element HPBW was performed

to maximize capacity. No multipath was considered in analysis. Secondly, the addition of

metal wires to the inter-array space to cause scattering and increase multipath richness

was introduced. The e�ect of these wires on capacity was modeled and investigated. This

dissertation suggests that element HPBW optimization in conjunction with objects placed

between the transmit and receive arrays in near-�eld MIMO systems can increase capacity

of near-�eld MIMO systems.

2.3 Preliminary Investigations

This section contains two preliminary investigations that served as the starting point

of work in this dissertation. The �rst investigation serves as a simple initial assessment of

MIMO capacity in the near-�eld using Hertzian dipoles. The second serves as an extension of

textbook near-�eld dipole interaction equations for simple parallel orientations to arbitrary

orientations. Neither investigation is novel enough to consider a contribution, but both are

important enough to include as background for this document.

2.3.1 Hertzian Dipole Field-Based Channel Matrix Formulation

AMIMO channel at a single frequency can be described as a channel matrix H (a complex

matrix which describes the amplitude gain and phase shift from a vector of applied voltage

signals at the transmit antenna array (~x) to a vector of induced voltage signals at the received

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 34



CHAPTER 2. BACKGROUND

antenna array (~y)) and an additive noise vector ~n. This relation is as follows:

~y = H~x+ ~n (2.19)

The channel matrix can either be deterministic, a stochastic process, or a sampling of a

stochastic process. Wideband models of MIMO channels involving extensions of the H

matrix to H(ω) can be made, but are beyond the scope of this chapter.

As a �rst step into investigating a near-�eld MIMO channel model, it is useful to formulate

a channel matrix H which includes near-�eld e�ects. Traditional path loss models used to

calculate values of the H matrix, including the Friis equation and Log-distance path loss

model, neglect these e�ects. Because the channel matrix is a relation of received voltage vr

and transmit voltage vt, because the electric �eld generated by the transmit antenna (using

free-space assumptions) is related to vt, and because vr is proportional to the electric �eld

incident on the receive antenna, an electric �eld equation which includes near-�eld e�ects

can be used in conjunction with antenna properties to determine the channel matrix.

For an initial investigation, a Hertzian dipole antenna was selected. The following is the

electric �eld equation for a Hertzian dipole:

~E(~r) = j
η0itdl

4π

(
k

r
− j

r2
− 1

kr3

)
e−jkr sin θejωtθ̂ +

η0itdl

2π

(
1

r2
− j

kr3

)
e−jkr cos θejωtr̂ (2.20)

where ~r is the position vector in relation to the transmit antenna, η0 is the intrinsic impedance

of free space, k is the wavenumber (k = 2π
λ
, where λ is wavelength in free space), r is the

radial component of ~r, θ is the elevation component of ~r, it is the current applied to the

transmitting antenna, and dl is the short length of the Hertzian dipole.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 35



CHAPTER 2. BACKGROUND

First, as a point of comparison, a far-�eld channel matrix H will be determined using

the Hertzian dipole equation, followed by a near-�eld channel matrix.

Far-Field Channel Matrix Formulation

For the far �eld, as r becomes large, 1
r2
and 1

r3
terms go to zero. Therefore, ~E becomes:

~E(~r) = j sin θ
η0itdlk

4πr
e−jkrejωtθ̂ (2.21)

We can assume voltage applied to the transmitting antenna is vt = Ztite
jωt, where Zt is the

impedance of the antenna, it is the magnitude of the current through the antenna (assumed to

be uniform due to the short length of a Hertzian dipole), and ejωt is the temporal component.

This equation can be arranged to �nd current in terms of voltage and impedance:

it =
vt

Ztejωt
(2.22)

Substituting it into the far-�eld Hertzian dipole equation:

~E(~r) = j sin θ
η0vtdlk

4πrZtejωt
e−jkrejωtθ̂ (2.23)

Simultaneously, the induced current at the output of the receive antenna ir is proportional

to ~E(~r) with dependence on the frequency of the received signal ω and orientation of the

receive antenna with respect to the incidence of ~E(~r) (both in θr and φr). This constant

of proportionality can be de�ned as a(θr, φr, ω), or in the case of the Hertzian dipole where

orientation in azimuthal angle of incidence φ has no e�ect on the received current, a(θr, ω).

Therefore we can de�ne the following relation between electric �eld and current at the
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receiver:

ir = a(θ, ω) ~E(~r) (2.24)

It follows that the voltage at the receiver vr is the following:

vr = Zrir = Zra(θ, ω) ~E(~r) (2.25)

Combining this with the ~E equation in terms of vt:

vre
jωt = j sin θ

Zra(θ, ω)η0vtdlk

4πrZt
e−jkrejωtθ̂ (2.26)

Performing a Fourier Transform on this equation:

2πVrδ(ω − ω0) = 2πj
Zra(θ, ω)η0dlk

4πrZt
e−jkr sin θVtδ(ω − ω0) (2.27)

Since H(ω0) = Vr
Vt
δ(ω − ω0), dividing both sides of the previous equation by 2πVt will

yield H(ω0):

H(ω0) = j
Zra(θ, ω0)η0dlk

4πrZt
e−jkr sin θ (2.28)

If we let b(θ, ω0) = j Zra(θ,ω0)η0dlk
4πZt

sin θ, then H(ω) can be rewritten as a function of θ, ω

and r:

H(θ, ω0, r) =
b(θ, ω0)e

−jkr

r
(2.29)

This is the channel response between two antennas in the far-�eld at frequency ω0. This is

exactly as expected; power gain is proportional to HH∗, which decreases as 1
r2
, which is also

the rate at which the Friis equation (used for far-�eld free-space gain) decreases.
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Next we will apply this result to build the channel matrix H. Figure 2.6 illustrates a

2× 2 MIMO system with each Tx/Rx antenna pair labeled with a di�erent H(θ, ω, r).

Tx1

Tx2

Rx1

Rx2

H11(θ1,ω,r11)

H22(θ2,ω,r22)

H
12 (θ

2 ,ω,r12 )

H 21
(θ 1
,ω
,r 21
)

b(θ1,ω)

b(θ2,ω)

Figure 2.6: 2× 2 MIMO System Model

For each transmit/receive pair of antennas ij, the distance rij is calculated, which is in

turn used (along with ω and receive antenna orientation θj) to calculate Hij(θj, ω, rij), which

populate H:

H =


b(θ1,ω)e−jkr11

r11

b(θ2,ω)e−jkr12

r12

b(θ1,ω)e−jkr21

r21

b(θ2,ω)e−jkr22

r22

 (2.30)

For the far �eld, r11 ≈ r12 ≈ r21 ≈ r22, which may result in a high condition number,

especially if θ1 = θ2. A high condition number may result in minimal gain in capacity

provided by MIMO over a SISO con�guration.
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Near-Field Channel Matrix Formulation

Our next step is to derive H using the same methodology as the previous subsection but

without far-�eld assumptions. For simplicity of analysis, we assume θ = π
2
, resulting in the

r̂ component going to zero due to cos θ.

~E(~r) = j
η0itdl

4π

(
k

r
− j

r2
− 1

kr3

)
e−jkrejωtθ̂ (2.31)

Using Eq. 2.31 and Eq. 2.22 together, we derive the following:

~E(~r) = j
η0vtdl

4πZtejωt

(
k

r
− j

r2
− 1

kr3

)
e−jkrejωtθ̂ (2.32)

Once again, the received current in Eq. 2.24 is manipulated to obtain an expression for vr

(Eq. 2.25). Substituting Eq. 2.32 into Eq. 2.25, we have:

vre
jωt = vt

jZra(π
2
, ω)η0dl

4πZt

(
k

r
− j

r2
− 1

kr3

)
e−jkrejωtθ̂ (2.33)

Performing a Fourier Transform on Eq. 2.33:

2πVrδ(ω − ω0) = 2πVt
jZra(π

2
, ω)η0dl

4πZt

(
k

r
− j

r2
− 1

kr3

)
e−jkrδ(ω − ω0) (2.34)

Since H(ω0) = Vr
Vt
δ(ω − ω0), dividing both sides of the previous equation by 2πVt will

yield H(ω0):

H(ω0) = j
Zra(π

2
, ω0)η0dl

4πZt

(
k

r
− j

r2
− 1

kr3

)
e−jkr (2.35)
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If we let b
(
π
2
, ω
)

= j
Zra(

π
2
,ω)η0dl

4πZt
, then H (ω0) can be rewritten as a function of θ, ω and r:

H
(
π

2
, ω0, r

)
= b

(
π

2
, ω0

)(
k

r
− j

r2
− 1

kr3

)
e−jkr (2.36)

This is the channel response between two antennas in the near-�eld at frequency ω0 and

θ = pi
2
. In the near-�eld, the 1

r2
and 1

r3
terms dominate.

Next we will once again apply this result to build the channel matrix H. Figure 2.6 still

describes the same system in the near-�eld. For each transmit/receive pair of antennas ij,

the distance rij is calculated (being much shorter than in the far-�eld case), which is in turn

used (along with ω0) to calculate Hij(θj, ω0, rij), which populate H:

H =

b
(
π
2
, ω0

) (
k
r11
− j

r211
− 1

kr311

)
e−jkr11 b

(
π
2
, ω0

) (
k
r12
− j

r212
− 1

kr312

)
e−jkr12

b
(
π
2
, ω0

) (
k
r21
− j

r221
− 1

kr321

)
e−jkr21 b

(
π
2
, ω0

) (
k
r22
− j

r222
− 1

kr322

)
e−jkr22

 (2.37)

2.3.2 AWGN Channel

For the AWGN channel, The H in Eq. 2.19 is deterministic, while the additive noise

vector ~n has a Gaussian distribution ñ1(0, σ
2)+jn2(0, σ

2). The value σ2 is used to determine

SNR for capacity calculations.

2.3.3 Normalization

Normalization is performed on the channel matrix H by multiplying it by

(
1

NtNr

‖H‖2F
)(− 1

2)
(2.38)
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or equivalently, by multiplying by the square root of the product of the number of receive and

transmit antennas and dividing by the value of the Frobenius norm of H [48]. Normalizing a

matrix by its Frobenius norm forces the sum of its eigenvalues (i.e. the sum of the square of its

singular values) to equal 1, and therefore allows us to investigate distribution of eigenvalues

among the independent parallel channels in the system.

This also allows us to explicitly set the SNR (the ratio of received signal power to noise

power at the receiver) in the capacity equation (de�ned in the next section), rather than

having to calculate the received power by multiplying some de�ned transmit power by the

squared unnormalized channel matrix. Also, by multiplying by the square root of the product

of number of transmit and receive antennas, we preserve the capacity gains provided by

having multiple independent streams in MIMO, allowing for comparison with other similarly

normalized MIMO or SISO systems.

2.3.4 Capacity Equations

As discussed in the background chapter, the capacity of a single communications channel

is known to be log2 (1 + SNR) (assuming normalized bandwidth). In MIMO communi-

cations, the channel matrix H can be decomposed to form RH (rank of H) independent

channels, each with its own applied power at the transmitter. The applied power is some

fraction of the total transmit power, Pt, and the sum of the powers of each independent

channel is equal to Pt. Each independent channel has a power gain proportional to an eigen-

value of the channel matrix, λ2n, where n is the index of the independent channel. Therefore,

the received power for independent channel n is equal to knPtλ
2, where kn is the fraction

of the power Pt applied to independent channel n. The SNR of this single, independent

channel is therefore knPtλ2

N0
where N0 is the noise power of the independent channel. If we
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de�ne the overall SNR of the receiver to be Pt
N0
, then the independent channel SNR is equal

to SNR · knλ2. In short, kn is the normalized power allocation of the transmitter, and the

generalized MIMO capacity equation becomes the sum of the capacity of the independent

channels:

C =
RH∑
n=1

log2

(
1 + SNR · kn~λ2n

)
(2.39)

The optimal distribution of power ~k between the independent channels depends on the

transmitter channel knowledge. If the MIMO system has no feedback mechanism or time-

division duplexing with which to estimate H, then the optimal power allocation is uniform

distribution of power among the independent channels, i.e. kn = 1
Nt

for all n, where Nt is

the number of transmit antennas. Therefore, the capacity of a MIMO channel where the

channel matrix is unknown at the transmitter is:

C =
RH∑
n=1

log2

(
1 +

SNR

Nt

~λ2n

)
(2.40)

If the transmitter has a method of accurately determining the channel matrix, it can per-

form eigenvalue decomposition (or singular value decomposition, where eigenvalues are equal

to the square of the singular values) to determine the channel eigenvalues. With this infor-

mation, the transmitter can perform the water�lling algorithm (outlined in the background

chapter) to determine the optimal power distribution P ∗n for each of the RH independent

channels. Normalizing the vector of transmit powers ~P ∗ by ‖~P ∗‖ yields kn = P ∗n
‖P ∗‖ , and

therefore the corresponding MIMO capacity for water�lling is:

C =
RH∑
n=1

log2

(
1 +

SNR · P ∗n
‖P ∗‖

~λ2n

)
(2.41)
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2.3.5 Channel and Capacity Simulation

In order to investigate the performance of this electric �eld-based line-of-sight AWGN

channel model which includes near-�eld components, a simulation was constructed in MAT-

LAB. This simulation uses Eq. 2.37 to generate a channel matrix H used in capacity calcu-

lation.

This simulation sweeps over SNR (0 to 15 dB) and array separation (from 0.2 to 20 λ).

First, it calculates the distance between each pair of transmit and receive antennas rij using

the antenna separation and array separation value. It is assumed that θ = π
2
, and that all

Hertzian dipoles in both receive and transmit arrays are co-planar and parallel. Next, using

the channel matrix equations (Eq. 2.37) from the previous section (note: the near-�eld e�ects

in this equation are negligible for far-�eld separation distances, and thus this equation can

be used for both near- and far-�eld scenarios. As a result, this equation is used in this

simulation for all array separation distances.), the channel matrix H is calculated.

The purpose of this simulation is to compare the e�ects of near versus far �eld on the

capacity of line-of-sight MIMO, not the e�ect of increased path loss due to increased array

separation on the capacity, and therefore the channel matrix H must be normalized as

described in the previous section to isolate the e�ect of near-�eld components in the model.

Next, singular value decomposition (SVD) is performed on the normalized channel matrix

Hnorm to determine singular value array ~λ. The rank of H (RH) corresponds to the number

of non-zero elements in ~λ. (It should be noted that the square of each singular value is equal

to an eigenvalue of Hnorm). If the channel is unknown at the transmitter, uniform power

distribution is used and MIMO capacity is computed as in equation Eq. 2.40. If the channel is

known at the transmitter through some mechanism, it can calculate channel eigenvalues and
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use water�lling to allocate power to the independent channels as P ∗, resulting in capacity

de�ned by Eq. 2.41.

Our simulation showed that for uniform power allocation, the capacity plot converged

towards a plane as the array separation distance increased, as illustrated in Fig. 2.7. This is

to be expected, as in the far-�eld, the 1
r
term dominates in both the electric �eld and channel

equations, the distances between transmit and receive antenna pairs become proportionally

similar, and the distribution of the eigenvalues becomes such that one value approaches zero

and the rank of the matrix essentially trends to one, indicating a single spatial channel.

With the decomposition of the channel matrix trending towards a single channel, and with

the normalization of the channel matrix removing the e�ects of path loss associated with

separation distance, the capacity plot trends asymptotically towards a constant when varying

array separation (a constant which is equal to log2

(
1 + SNR

Nt

)
). In short, the bene�ts of

MIMO disappear for a line of sight AWGN channel in the far-�eld, with the capacity trending

towards a SISO value.

In the near-�eld, however, (in the range at and below λ = 1), we see that a slight increase

in capacity is observed as the array separation distance decreases, particularly at high SNR

values. This can be attributed to the fact that at lower array separation distances, the

distances between transmit and receive antenna pairs become proportionally less similar,

indicating the signal received at each receive antenna has a dominant component from one

transmit antenna and a less dominant component from another. Therefore in the absence

of re�ections and a scattering environment, MIMO systems perform better in the near-�eld

than in the far �eld.
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Figure 2.7: Capacity with Uniform Allocation vs. SNR and Spacing

2.3.6 Background for Selection of Free-Space Green's Function as

Basis

The following is adapted from Orfanidis textbook on Electromagnetic Waves and An-

tennas [19], but is adapted for arbitrary-oriented dipoles instead of z-oriented dipoles, non-
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parallel dipoles, or coplanar dipoles. It is also adapted to use a 3-term King current distribu-

tion approximation instead of the sinusoidal assumption due to the fact that some antennas

in a log periodic array will be signi�cantly longer than a half-wavelength. The goal is to

�nd the mutual- and self-impedance at each element in the system in free-space, which can

then be used in a system of equations to �nd the voltage at the receiving dipole or dipoles

presented over a load for a unit input. This is the free-space channel from probe input to

receiver output, including near-�eld e�ects and coupling. This channel includes all antenna

e�ects. Because the far-�eld approximation does not hold, the concept of antenna gain pat-

terns and angle of arrival have limited meaning, as electric �elds from one element to another

do not follow a typical distribution across the antenna as if the incident �eld was a plane

wave with de�nite direction of arrival. While re�ected wave components may exhibit a plane

wave-like behavior at the receiver due to the increased travel distance of the wave between

transmitter and receiver, the dominant line of sight �eld and some re�ections may not. In

free space, the only �eld of interest will be the line of sight case, meaning the line of sight

case can be analyzed for choice of channel approximation basis in the non-far �eld, as well

as the conditions in which this approximation basis holds.

The free-space system that approximates the line of sight conditions of the channel of

interest to be modeled is the �rst task in the choice approximation basis function. The

channel of interest to be modeled consists of probe antenna log-periodic arrays each with

fourteen-elements, oriented perpendicular to the X-Y plane and aimed at a point in the center

of the X-Y plane, and receiver dipoles oriented in the Z direction, with centers located along

a plane parallel to the X-Y plane. As a �rst approximation, a single log-periodic antenna

and a single dipole will be analyzed.

To model the channel from a log-periodic antenna to a dipole antenna, a relation between
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the input of the log periodic antenna and output of the dipole must be established. To

accomplish this, the current distribution on each antenna element and the electric �elds of

each antenna must be established.

Each element in a log-periodic antenna is itself a dipole antenna. The length and spacing

of each element in the array is related to the length and spacing of the previous element by a

factor τ . The starting and ending dipole lengths are chosen such that half of the shortest and

longest wavelengths of interest are between the lengths of the shortest and longest elements.

This ensures that for any input frequency in the range of interest will be relatively close in

half-wavelength to the length of one of the array antenna elements. The number of elements

and the initial spacing parameter are determined according to the desired antenna gain,

directivity, and other parameters desired.

In �nding the E-�eld for a dipole as in �gure 2.8, the following variables must be de�ned.

The orientation of the dipole is in the r̂m direction. Each half of the dipole has length

hm. The center of the dipole is located at the vector position ~rm0 . The top of the antenna

therefore is at position ~rm0 + hmr̂m, and the bottom is at position ~rm0 − hmr̂m.

The observation point at which the E-�eld is observed is vector position ~w. Distance R is

the distance from an arbitrary point on antenna m de�ned by ~rm0 + αmr̂m (where αm is a

scalar value between −hm and hm) to the observation point ~w, ||~w−~rm0 −αmr̂m||. Distance

R0 is the distance from the antenna center to the observation point ||~w−~rm0||. Distance R1

is the distance from the antenna top to the observation point, ||~w− ~rm0 − hmr̂m||. Distance

R2 is the distance from the antenna bottom to the observation point, ||~w − ~rm0 + hmr̂m||.

The radial vector from the antenna ρ̂m is in the direction of the observation point and

perpendicular to r̂m, the orientation of the antenna. The observation location vector ~w can

therefore be expressed as:
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Figure 2.8: Dipole Electric Field Formulation

~w = ~rm0 + zmr̂m + ρmρ̂m (2.42)

where ~rm0 is the center of the dipole, zmr̂m is an antenna directional component, and ρmρ̂m

is a radial component. The component zm can be calculated with vector projection as:

zm =
(~w − ~rm0) · r̂m

r̂m · r̂m
r̂m (2.43)

while ρm can be calculated with vector rejection as:

ρm = ~w − ~rm0 −
(~w − ~rm0) · r̂m

r̂m · r̂m
r̂m (2.44)

With this component de�nition of ~w, the distances R, R0, R1, and R2 can be rede�ned as:

R =
√

(zm − αm)2 + ρ2m (2.45)
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R0 =
√
z2m + ρ2m (2.46)

R1 =
√

(zm − hm) +2 +ρ2m (2.47)

R2 =
√

(zm + hm) +2 +ρ2m (2.48)

These component de�nitions of distances allow for a straightforward evaluation of magnetic

vector potential, and subsequently electric �eld expressions.

As adapted from [19] to match the arbitrary vector dipole notation in this analysis, the

r̂m-component of the magnetic vector potential Ar̂m is:

Ar̂m(zm, ρm) =
µ

4π

∫ hm

−hm
I(α′m)

e−kR

R
dα′m (2.49)

with zm, ρm, hm, αm, and R as previously de�ned, k is the wavenumber at the frequency

of analysis, and µ is the permiability of free space. Using Maxwell's equations, this can be

utilized to �nd the r̂m and ρ̂m components of the electic �eld. The relevant forms of the

equations used are:

ωµεEr̂m = ∂2r̂mAr̂m + k2Ar̂m (2.50)

ωµεEρ̂m = ∂ρ̂m∂r̂mAr̂m (2.51)
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µHφ = −∂ρ̂mAr̂m (2.52)

∂ρ̂m(ρmHφ̂m
) = ωερmEr̂m (2.53)

ωεEρ̂m = −∂r̂mHφ̂m
(2.54)

Using these relations and the de�nition of Ar̂m , in conjunction with the fact that the

r̂m component of the electric �eld must vanish along the antenna's surface, along with as-

sumptions the current distribution Im(αm) is symmetric in αm and is zero at the ends of

the antenna, we can de�ne the components of the electric �eld at the observation point as a

function of current distribution along the antenna, and the position of the observation point

in relation to the position and orientation of the antenna.

ωµεEr̂m(zm, ρm) =
µ

4π

∫ hm

−hm
I(α′m)(∂2r̂m + k2)

e−kR

R
dα′m (2.55)

− 4πωερmEρ̂m(zm, ρm) =
∫ hm

−hm
I(α′m)(∂2r̂m + k2)

(
(zm − α′m)

e−kR

R

)
dα′m (2.56)

Using a di�erential identity, de�ned end-point conditions, and a rede�nition of the integral

into parts, the following equations which express the r̂m and ρ̂m electric �eld components at

the observation point ~w are formed:
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Er̂m(zm, ρm) =
1

4πωε

[∫ 0−

−hm

e−kR

R

(
I ′′(α′m) + k2I(α′m)

)
dα′m

+
∫ hm

0+

e−kR

R

(
I ′′(α′m) + k2I(α′m)

)
dα′m

+ 2I ′(0+)
e−kR0

R0

− I ′(h)

(
e−kR1

R1

+
e−R2

R2

)] (2.57)

Eρ̂m(zm, ρm) =
1

−4πωερm

[∫ 0−

−hm
(zm − α′m)

e−kR

R

(
I ′′(α′m) + k2I(α′m)

)
dα′m

+
∫ hm

0+
(zm − α′m)

e−kR

R

(
I ′′(α′m) + k2I(α′m)

)
dα′m

+ 2I ′(0+)zm
e−kR0

R0

− I ′(h)

(
(zm − hm)

e−kR1

R1

+ (zm + hm)
e−R2

R2

)] (2.58)

The �nal step for obtaining the accurate electric �eld from a dipole is to establish an

accurate approximation of the current along the dipole. A procedure from [19] is utilized

to numerically compute the current distribution of the antenna utilizing Hallen equation

solutions "with point-matching, pulse basis functions, and exact kernel with M=100 upper-

half current samples". The numerical solution is then �t to a 3-term approximation de�ned

as:

I(αm) = A1 [sin(k|αm|)− sin(khm)]+A2 [cos(kαm)− cos(khm)]+A3

[
cos(

kαm
2

)− cos(khm
2

)

]
(2.59)

with derivatives used in the electric �eld equations de�ned as:
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I ′′(α′m) + k2I(α′m) = −k2A1sin(khm)− k2A2cos(khm)− k2A3

[
cos(

khm
2

)− 3

4
cos(

kα′m
2

)

]
(2.60)

I ′(0+) = −I ′(0−) = kA1 (2.61)

I ′(hm) = −I ′(−hm) = kA1cos(khm)− kA2sin(khm)− 1

2
kA3sin(

khm
2

) (2.62)

With the component de�nition of the electric �eld in conjunction with a current ap-

proximation, the complete electric �eld from one antenna can be de�ned completely along

a second antenna, allowing for calculation of mutual impedance, and thereby allowing one

to �nd the voltage or current induced at each antenna from the excitation of one or more of

the antennas in the system.

Let a system of two antennas be de�ned as antennas m and n, with arbitrary vector

orientations r̂m and r̂n respectively. Figure 2.9 de�nes the the variables in this system.

The two antennas have centers at ~rm0 and ~rn0 respectively, and half-lengths hm and hn

respectively. The observation point is now de�ned as a position on antenna n, ~rn0 + αnr̂n

rather than an arbitrary point in space ~w. Using this de�nition, the variables zm and ρm

must be rede�ned.

~rn0 + αnr̂n = ~rm0 + zmr̂m + ρmρ̂m (2.63)

once again, where ~rm0 is the center of the dipole, zmr̂m is an antenna directional component,

and ρmρ̂m is a radial component. zm can be calculated with vector projection as:
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Figure 2.9: Dipole Mutual Impedance Formulation

zm(αn) =
(~rn0 + αnr̂n − ~rm0) · r̂m

r̂m · r̂m
r̂m (2.64)

while ρm can be calculated with vector rejection as:

ρm(αn) = ~rn0 + αnr̂n − ~rm0 −
(~rn0 + αnr̂n − ~rm0) · r̂m

r̂m · r̂m
r̂m (2.65)

these de�nitions are important as they will allow a projection of the electric �eld onto

the orientation vector of the receiving antenna, thus �nding the electric �eld component

perpendicular to the receive antenna as a function of position on the receive antenna. This

electric �eld along the receive antenna, as well as the approximated current along the receive

antenna, can be utilized to �nd the mutual impedance of the second antenna on the �rst

antenna. First, the induced open-circuit voltage on the antenna n due to antenna m is:
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Vnm,oc = − 1

In

∫ hn

−hn
( ~Enm(αn) · r̂n)In(αn)dαn (2.66)

where αn is a scalar from −hn to hn that de�nes position on antenna n, In is the current

at the center of antenna n (αn = 0), In(αn) is the current at position αn on antenna n, and

Enm(αn) is the electric �eld at the point ~rn0 + αnr̂n on antenna n due to antenna m. Using

equations 2.57 and 2.58, Emn(αn) is de�ned as:

~Enm(αn) = Er̂m(zm(αn), ρm(αn))r̂m + Eρ̂m(zm(αn), ρm(αn))ρ̂m (2.67)

The dot product of this �eld with the orientation vector r̂n is therefore the electrical �eld

component along antenna n. The current In(αn), also used in the open-circuit equation, is

found using the 3-term �t Hallen current approximation for antenna (n with coe�cients A1,

A2 and A3 recalculated for antenna n). With the new approximation coe�cients, In(αn)

can be de�ned using 2.59. Finally, using Im = Im(0) and In = In(0), and the open-circuit

voltage equation 2.66, the mutual impedance is de�ned as:

Znm =
Vnm,oc
Im

= − 1

ImIn

∫ hn

−hn
( ~Enm(αn) · r̂n)In(αn)dαn (2.68)

In addition to mutual impedance between each and every combination of elements in the

system (both within the log-periodic antenna and between the elements of the log periodic

antenna and the receiving dipole antenna), the self impedance of each element must be cal-

culated. (NOTE: this is the part that is resulting in a "bad" half-wave dipole approximation

and should be scrutinized the most.) Figure 2.10 shows a horizontally-magni�ed dipole an-

tenna m, with radius am. All other variables remain the same as for the previously presented
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electric �eld analysis of dipole m. According to [19], the self-impedance can be calculated

with the same formula, treating the surface of the antenna, ~rm0 +αmr̂m +amρ̂m, as the "sec-

ond antenna" along which the electric �eld is calculated for the impedance equation 2.68.

Because the two aspects of the same antenna are oriented identically in the r̂m direction,

only the r̂m component of the E �eld will be present in the impedance calculation.

h
m

h
m

r̂m

rm0

rm0+hmr̂m

rm0-hmr̂m

rm0+amρm̂+αmr̂m

Im(αn)

Dipole m

ẑ
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Figure 2.10: Dipole Self Impedance Formulation

It should be noted that this approach is presented in [19] in the context of a sinu-

soidal current approximation, which only applies to antennas around a half-wavelength in

length. Because elements of the log periodic antenna may be considerably longer than a
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half-wavelength at the frequency of analysis, this approximation cannot be used. However,

the current approximation method used in prior sections utilizes assumptions such as the r̂m

component of the electric �eld being equal to zero on the antenna surface, which is re�ected

in the developed electrical �eld equations.
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Small Anechoic Chamber Feasibility for

MIMO-OTA Testing

The �rst contribution of this work is a cost-e�ective small anechoic chamber for MIMO-

OTA testing demonstrating the e�ect of size constraints on the performance of an anechoic

chamber for testing MIMO-OTA signals in a single-cluster environment with Laplacian Power

Azimuthal Spectrum. Typical large anechoic chambers used in MIMO-OTA testing can often

cost in excess of one million USD. A small chamber could be constructed for $200 thousand

USD, a signi�cantly more cost-e�ective solution. Previous work on this problem focuses on

minimizing the number of probes necessary to reproduce such an environment, and does not

focus on constraining these probes to a small chamber. This previous work, therefore, does

not investigate parameters such as chamber dimensions, antenna arrangement, or frequency.

The motivation for this work is to present a system for inexpensive pre-certi�cation of next

generation devices that can help meet the demands and calls for greater broadband wireless

access.

The following section includes details on the theory behind the plane wave and Laplacian

PAS Electric �eld synthesis. Section 3.2 includes the system design and design of the chamber

used in analysis. Section 3.3 includes the results of the Laplacian PAS channel simulations

performed in MATLAB, and Sec. 3.4 covers the electromagnetic simulation results. The

conclusions and future work are described in Sec. 3.5.
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3.1 Electromagnetic Field Synthesis

In this section, we review previous work to understand the ability of a limited number of

antennas to synthesize a desired electric �eld in a test zone. In the �rst subsection, spherical

wave expansion theory is reviewed to investigate the number of probe antennas required to

synthesize a �eld in a test zone of �nite size. In the subsequent subsection, the ability of

an array of antennas to synthesize a Laplacian PAS, and therefore model a single cluster, is

discussed.

3.1.1 Number of probe antennas

A study of spherical wave expansion of a plane wave was performed as an initial investi-

gation into the number of probe antennas required to generate a target E-�eld in a test zone

to within a desired degree of accuracy. An arbitrary electromagnetic �eld can be �expanded

into spherical waves in source-free regions of space limited by spherical surfaces centered at

the origin of a spherical coordinate system� [18]. This electric �eld expansion is expressed

as:

~E(r, θ, φ) =
k
√
η

∑
csmn

Q(c)
smn

~F (c)
smn(r, θ, φ) (3.1)

where ~F (c)
smn is the spherical wave function, with c indicating the radial dependency, s indi-

cating the spherical wave function type, m indicating the order of the wave function, and

n indicating the degree of the wave function. Q(c)
smn is the spherical wave coe�cient, η is

the admittance of the medium, k is the wave number, and (r, θ, φ) indicates the spherical

coordinate of a point.

In the special case of expansion of a plane wave, many of these spherical wave coe�cients
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are approximately equal to zero, leaving coe�cients for the two fundamental spherical wave

functions with order -1 and 1, and degree 1 to N , or 4N coe�cients total. Choice of N is

arbitrary, and should be equal to in�nity to contain all degrees (modes) of the expansion.

However, a highly accurate approximation can be achieved if N is chosen to be r0k, where

k is the wavenumber of the plane wave, and r0 is the radius of the desired spherical surface

boundary. Modes above this value of N are comparatively negligible [18].

In [49], the spherical wave expansion is extended to a cylindrical case, and a 2-D cross

section of the cylindrical solid is analyzed in terms of a spherical wave expansion. Addi-

tionally, [25] relates the number of modes in the spherical wave expansion to the number

of (far-�eld) antennas required to accurately synthesize this �eld. In the case of the E-�eld

perpendicular to the 2-D test zone as described in the paper, to achieve a test zone of radius

r, a minimum number of probes K are required, where K is de�ned in Eq. (3.2) as

K = 4πr/λ+ 1 (3.2)

where λ is the wavelength of the plane wave. This equation was derived under the assumption

that uniform circular spacing of antennas around the test zone in the far-�eld (full-ring test

setup) was utilized, and that plane waves may arrive from any angle. If the direction of plane

wave arrival (or other �eld arrival) is limited to a speci�c direction or range of directions,

this number may be reduced. It is this reduction that will make a small chamber test setup

possible.

3.1.2 3GPP SCME Channel Model

Our goal is to understand the trade-o�s of minimizing the chamber size (including min-

imizing the number of probes and separation distance between probes) and the ability to
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accurately synthesize a desired �eld. To investigate this goal, we need to further discuss the

desired �eld to be synthesized.

The 3GPP MIMO-OTA Subgroup (MOSG) [20] is standardizing a channel model based

upon the 3GPP Spatial Channel Model Extended (SCME) [50]. The SCME models a multi-

path fading channel with power-delay parameters with azimuthal-angular dependence. This

angular dependence results from spread of power that is created from a environment based

around a given cluster. The cluster of the power has been shown to have a Laplacian [25]

distribution, which is de�ned in unnormalized form by Eq. (3.3)

P (φ) =


e−|
√
2φ/σ| φ ∈ [−π, π)

0 otherwise

(3.3)

where φ is the azimuthal angle, and σ is the standard deviation of the Laplacian distribution.

This equation assumes a cluster arrival from 0 degrees; the equation can be shifted in φ for

a cluster arrival from another angle.

Laitenen et al. [25] generate a target 2-D Laplacian PAS in a test zone by sampling the

unnormalized truncated Laplacian PAS function from 360 azimuthal directions with 1 degree

spacing. This set of sampled amplitudes is applied to 360 plane waves arriving from each

corresponding azimuthal direction. Each plane wave is given a random phase sampled from

a uniform distribution. The sum of the 360 plane waves forms the target E-�eld in the test

zone. The target E-�eld is uniformly sampled around the perimeter of the test zone, r0.

The unweighted E-�eld, Ek(r0, φ) contribution of each probe antenna in the probe array is

determined at the same set of sample points, and an E-�eld 2-norm matching is performed

to determine the complex coe�cients of an each probe antenna, ck. After 2-norm matching,

the synthesized E-�eld is approximately equal to the target E-�eld as in Eq. (3.4).

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 60



CHAPTER 3. SMALL ANECHOIC CHAMBER FEASIBILITY FOR MIMO-OTA
TESTING

e(r0) = 20 log10

 max
0◦≤φ<360◦


∣∣∣ ~ESynth(r0, φ)− ~ETarget(r0, φ)

∣∣∣
max

0<r≤r0,0◦≤φ<360◦

∣∣∣ ~ETarget(r, φ)
∣∣∣

 (3.5)

~ETarget(r0, φ) ≈ ~ESynth(r0, φ) =
N∑
k=1

ck ~Ek(r0, φ) (3.4)

The re�ectivity (error) of the synthesized �eld from the target �eld is calculated across

the test zone as a function of radius as in Eq. (3.5). This �gure of merit will be used to

analyze the performance of small chambers.

In previous work, the size of the test zone and angular spread were varied to determine

the minimum number of OTA probes in various spacings needed to achieve at most -15 dB of

re�ectivity in the test zone in each case [25]. Additionally, this previous work assumed a large

chamber without non-ideal e�ects due to re�ections. Our contribution is an investigation

of chamber design with the goal of minimizing the chamber dimensions while considering

practical probe antenna locations and e�ects of re�ections on �eld generation.

3.2 Small chamber system

The small anechoic MIMO-OTA test chamber is designed to create a synthetic wireless

environment for one cluster. This cluster models the multi-path behavior as a tapped-delay

line with a Laplacian PAS. The parameters of the multi-path channel are controlled by the

RMS delay spread and the angular spread of the distribution of power, which are incorporated

in the channel emulator. The channel emulator is driven by the 4×4 MIMO signaling and has

N outputs corresponding to the N probe antennas with vertical (or horizontal) polarization.

The method for creating the random channel is described in the section 3.1, which provides
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a set of weights that are used to control the probes and generate a desired �eld in the test

zone.

The ability to generate any arbitrary �eld in the test zone is related to the number of

probes and their con�guration. As such, this section describes the parameters of the chamber

for evaluation of di�erent test sizes. We assume the 2-D case where the elevation angle is

θ = 90◦. Figure 3.1 shows the basic arrangement of the chamber, with the width W of the

chamber determined by the vertical span of the N antennas in the diagram, and the height

of the chamber determined by the distance between the test zone and the probe antenna

array A, and the test zone radius r0. The device under test (DUT) is centered in the test

zone radius and will be rotated in 3-D to evaluate the performance as a function of DUT

orientation to the test �eld.

The goal of this work is to determine the feasibility of testing a wide range of devices,

from laptops to mobile phones, in a small anechoic chamber. Our simulations evaluate a wide

range of values to test the corner cases of the system. In Table 3.1, we list the values for the

physical and test parameters that are used in the simulations. Our simulations include two

di�erent methods that allow for simulating a wide range of chamber parameters including

dimensions, frequency of operation, and Laplacian PAS spread. Also, one of these methods

(HFSS) provides a method for considering practical chamber e�ects such as re�ections from

the chamber walls. The details of each type of simulation is described in the following

sections.

3.2.1 Numerical Model

A simulation of the system in a vacuum (without a surrounding chamber) was performed

in Mathworks Matrix Laboratory (MATLAB) sweeping over the set of system parameters
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Figure 3.1: Small Anechoic Chamber Dimensions

listed Table 3.1. In the simulation a target Laplacian PAS was generated as in [25]. 2-

norm matching was performed to determine the complex coe�cients of each probe antenna,

and the synthesized �eld from the probe antennas with applied weights was generated as

in Eq. (3.4). The re�ectivity of the synthesized �eld at the test zone perimeter was then

determined (Eq.(3.5)). This simulation utilized a horn antenna radiation pattern with each

antenna pointed at the center of the test zone, which allows for antenna con�gurations to

be more like those found in an actual small anechoic chamber. Due to the random nature of

the target E-�eld (caused by the random phase of each plane wave), a Monte Carlo analysis

was performed to ensure a certain level of performance with a given system con�guration.

The statistical distribution of re�ectivity was calculated for each system con�guration from
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Table 3.1: Simulation Parameters

Parameter Value

Laplacian PAS spread (σ - degrees) 25, 35, 45
Frequency (f - GHz) 0.7, 2.4, 5.9

Test zone radius (r0 - m) 0.10, 0.15, 0.20
Width (W - m) 0.95, 1.00, 2.00

Probe Antennas (N) 3 . . . 6

the analysis.

In addition to the simulation scenarios described above, an additional set of simulations

was performed for comparison to the simulations performed in the following subsection. The

electromagnetic simulation program used in the following subsection did not have preset

horn antenna sources, but did have an ideal Hertzian dipole source that could be utilized.

Also, the complexity and long simulation time of this program limited the number of sys-

tem con�gurations that could be simulated. As a result, a subset of simulations was run

in MATLAB for comparison with the electromagnetic simulations using a Hertzian dipole

antenna instead of a horn antenna.

The simulations include Laplacian standard deviation (σ) of 25, 35 and 45 degrees, test

zone radius r0 of 0.1 m, and two chamber con�gurations. Chamber con�guration 1 consisted

of 6 antennas, 700 MHz and antenna array width of 2.0 m. Con�guration 2 consisted of

3 antennas, 2 GHz, and antenna array width of 0.95 m. Antennas were polarized in the

positive X direction (perpendicular to the test zone, i.e. vertical polarization). Antenna

polarization in the Y direction (parallel to the test zone, i.e. horizontal polarization) was

also considered separately.
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3.2.2 Computational Electromagnetic Model

The entire anechoic chamber system was also modeled in Ansys's High Frequency Struc-

ture Simulator (HFSS), a �nite element method (FEM)-based electromagnetic simulation

program. This allows for validation of the MATLAB simulations in a 3-D system. Two

models were developed in HFSS; one with the antennas and test zone placed in a vacuum

to compare results directly to those generated in MATLAB, and one with a small anechoic

chamber with non-ideal absorbing materials encasing both the antennas and the test zone.

The chamber model shown in Fig. 3.2 consists of an outer layer of stainless steel, and an

inner absorbing material modeled after the Cuming LF-77 absorber. The Cuming LF-77

was modeled as three layers, each of thickness 0.75 inches, and each with complex permit-

tivity and permeability values provided by the manufacturer at frequencies of 2 GHz and

3 GHz. Values of complex permittivity and permeability at 700 MHz were determined by

extrapolation. The space both inside and outside the chamber was modeled as a vacuum.

As mentioned previously, the antennas used for the HFSS simulations performed in this

paper are Hertzian dipoles, polarized �rst in the X direction (vertical), and then in the Y

direction (horizontal) in a second simulation set. The interior width of the chamber is the

width of the antenna array plus a space of 0.25 times the antenna spacing added to each

side of the chamber. Antennas are placed 0.1 meters from the bottom of the chamber. The

radius from the center of the test zone to the line of antennas is 1 meter. The center of

the test zone is placed 0.3 meters from the top of the chamber. The depth of the chamber

(front to back) was 1 meter, and the plane containing the probe antenna array and test

zone is located 0.5 meters from both the front and back of the chamber. The test zone over

which the �eld is matched is a circle with a radius of either 0.1, 0.15 or 0.2 meters depending
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Figure 3.2: HFSS Chamber Model of a Small Chamber

on the simulation. The number of antennas and spacing of the antennas is as de�ned in

the MATLAB simulation in the previous section. Figure 3.2 illustrates the chamber as

modeled in HFSS. Note that the Hertzian dipole antennas are illustrated as arrows in the

chamber model, with the tail indicating the location of the antenna, and the cone-shaped

head indicating the polarization of the antenna.

3.3 Analytical Results

In an e�ort to determine the feasibility of various chamber con�gurations in synthesizing

a Laplacian PAS �eld of various azimuthal spreads, a MATLAB script performed a Monte

Carlo analysis for each con�guration to determine the re�ectivity distribution (as detailed

in Sec. 3.2). The mean and standard deviation of the re�ectivity was determined to within

95% con�dence of being within an error of 0.25 dB.
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The results of the simulations with horn antenna radiation pattern are analyzed with

-15 dB as the maximum level of re�ectivity. General trends of the 324 combinations of

simulation parameters are that lower frequencies, lower test zone radius, smaller Laplacian

spreads, and more antennas yield superior re�ectivities. Eighty �ve con�gurations were

observed with mean re�ectivities below -15 dB.

In terms of frequency, 55 con�gurations with a frequency of 700 MHz, 29 con�gurations

with a frequency of 2.4 GHz, and one con�guration with a frequency of 5.9 GHz had a

mean re�ectivity of less than -15 dB. Clearly target �elds of lower frequencies are easier to

synthesize than those of higher frequencies. This is due to the longer wavelength of lower

frequencies, resulting in lower variation across the test zone, which is easier to synthesize

accurately.

In terms of test zone radius, 58 con�gurations with a test zone radius of 0.1 m, 26 con-

�gurations with a test zone radius of 0.15 m, and one con�guration with a test zone radius

of 0.2 m had a mean re�ectivity of less than -15 dB. Target �elds of a smaller test zone

are easier to synthesize accurately than those of a larger test zone due to less variation in a

smaller test zone when compared to a larger test zone at a �xed frequency of operation.

In terms of number of antennas, 9 con�gurations with 3 antennas, 14 con�gurations with

4 antennas, 27 con�gurations with 5 antennas, and 35 con�gurations with 6 antennas had a

mean re�ectivity of less than -15 dB. This indicates that target �elds can be more accurately

synthesized with a greater number of antennas. This is due to the fact that greater numbers

of antennas can allow for greater variation of the synthesized test �eld.

In terms of Laplacian PAS spread, 32 con�gurations with a spread of σ = 25 degrees,

29 con�gurations with a spread of σ = 35 degrees, and 24 con�gurations with a spread of

σ = 45 degrees had a mean re�ectivity of less than -15 dB. This does not indicate a strong
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Figure 3.3: CDF of Re�ectivity for Select Con�gurations, 700 MHz and 35 degree spread

trend between Laplacian PAS spread and accuracy of �eld synthesis. This is likely due to the

fact that this �eld synthesis depends mostly on the direction of arrival of the power and thus

there is more correlation between antenna spacing and Laplacian spread in terms of �eld

synthesis accuracy. For wider Laplacian spreads, wider antenna spacings tend to produce

more accurate �eld synthesis, while for narrow Laplacian spreads, smaller antenna spacings

produce a more accurate synthesized �eld.

As for the distribution of the re�ectivity, the majority of the observed standard deviations

fall between 2 dB and 3 dB in the con�gurations with mean re�ectivity below -15 dB. Figure

3.3 shows the distribution of two sample con�gurations at 700 MHz with a 35 degree spread,

a larger chamber 2m wide with 6 probe antennas, and another chamber 0.95 m wide with 3

probe antennas.

The Laplacian spread of σ = 35◦ is particularly important, as it occurs as the spread
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for the Laplacian PAS in numerous standards [20]; chamber con�gurations with a spread of

35 degrees are evaluated. For the smaller chamber (antenna array width = 0.95 m) with

3 antennas is considered, the only acceptable con�guration is with a test zone radius of

10 cm. With 6 antennas, a test zone radius of 10 cm and 15 cm are acceptable. If the width

is set to 2 m and the number of antennas to 5 or 6, a 15 cm test zone radius is achieved for

5 antennas at 700 MHz and 6 antennas at both 700 MHz and 2.4 GHz. A 10 cm test zone

radius is achieved for 5 antennas and 2.4 GHz.

3.4 Electromagnetic Simulation Results

After investigating the synthesis of the E-�eld with horn probe antennas in a test zone in

MATLAB, further investigation was performed on the synthesis of the E-�eld using Hertzian

dipole antennas using both MATLAB and Ansys HFSS. First, the simulations were per-

formed in MATLAB as described in section 3.2 for the subset of con�gurations that will be

replicated in HFSS. Next, as described previously, the chamber was modeled twice in HFSS,

�rst with all parts of the chamber set to a vacuum material (to for direct comparison of

HFSS results to those produced in MATLAB), and then with the materials set to a stainless

steel enclosure and three-layer absorber to model an actual chamber. The simulations were

performed with vertical polarization for both the target �eld and the probe antennas.

HFSS simulation results were observed to have a di�erent zero-phase point for the �eld

generated from each Hertzian dipole antenna with respect to that calculated in MATLAB

using ideal Hertzian dipole equations. As a result, the complex coe�cients for each an-

tenna calculated in MATLAB for generating a target �eld could not be used directly in

HFSS. Instead, the E-�eld contribution of each Hertzian dipole probe antenna was mea-

sured separately at a set of 360 equally-spaced points around the test zone perimeter within
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HFSS. Using this �eld data along with the target Laplacian PAS �eld calculated at the same

points, 2-norm matching was performed to determine the complex weights to be applied to

each Hertzian dipole probe antenna in HFSS. Also, because the resultant HFSS �eld data

obtained after applying complex weights to each antenna matched that of the sum of the

complex-weighted �eld data measured from each antenna separately (as expected), the re-

sultant synthesized HFSS �eld could be calculated outside of HFSS (in MATLAB) directly

from the unweighted �eld data in the test zone of each independent antenna. As a result, for

each chamber con�guration (solution frequency, antenna array size/con�guration, chamber

material), an unweighted �eld was measured at a set of test zone points from each antenna

in HFSS, and this �eld data was exported.

Table 3.2: Simulation Results

r0
(m) N

Lap.
σ

Freq.
(GHz)

Width
(m)

Matlab,
vacuum

HFSS,
vacuum

HFSS,
chamber

mean
ref.
(dB)

std.
dev.
ref.
(dB)

mean
ref.
(dB)

std.
dev.
ref.
(dB)

mean
ref.
(dB)

std.
dev.
ref.
(dB)

0.1 6 25◦ 0.7 2.0 -36.72 2.42 -36.28 2.27 -21.51 4.46
0.1 6 35◦ 0.7 2.0 -34.69 3.52 -34.27 3.41 -22.17 4.47
0.1 6 45◦ 0.7 2.0 -30.79 4.56 -30.32 4.59 -22.42 4.76
0.1 3 25◦ 2.0 0.95 -17.15 3.70 -17.33 3.98 -15.12 2.98
0.1 3 35◦ 2.0 0.95 -14.37 3.65 -13.47 3.58 -12.99 3.17
0.1 3 45◦ 2.0 0.95 -12.27 3.57 -11.39 3.42 -11.08 3.13

From this HFSS measured �eld data from each antenna for each chamber con�guration,

a MATLAB script was developed which determined complex antenna coe�cients using the

method described in the previous paragraph. These coe�cients were used to synthesize

the �eld using the sum of weighted �eld data from each antenna. The re�ectivity of the
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synthesized �eld was determined by comparing it to the target �eld at the radius of the test

zone. A Monte Carlo analysis was performed using this procedure to determine the mean

and standard deviation of the re�ectivity distribution to within a 95% con�dence of being

within 0.25 dB of the mean. The results of this simulation are also presented in Table 3.2.

From the results, one can see that the mean and standard deviation in the MATLAB

simulations and the HFSS vacuum simulations are nearly identical, always within 1 dB of

each other. This validates that the Hertzian dipole equations used in MATLAB are consistent

with the Hertzian dipole simulated in HFSS.

The performance of the chamber was noticeably less than that of the vacuum, which is

expected, as the presence of re�ected power (due to imperfect absorption by the absorb-

ing material) makes matching the synthesized �eld to the target �eld more di�cult. The

di�erence between the chamber and vacuum cases is most pronounced at 700 MHz, with a

di�erence of nearly 10 to 15 dB. The di�erence between the chamber and vacuum cases was

less pronounced at 2 GHz, with a di�erence of approximately 0.3 to 2.2 dB. This is due to

the reduced contribution of re�ected energy to the test zone �eld. This indicates that for

2 GHz, MATLAB simulations of Laplacian PAS synthesis in a vacuum will be reasonably

close to that synthesized in an actual chamber, and can be used as a predictor of chamber

performance.

Additional identical simulations were performed with horizontally-polarized Hertzian

dipole antennas located in the same locations as the vertically-polarized antennas. The

target �eld was generated using 360 plane waves in the same manner as above, but with

polarizations tangential to the test zone circle in the direction of arrival. In all cases, both

vacuum and simulated chamber, the re�ectivity was observed to be approximately 1 dB,

indicating signi�cant error. As such, horizontally-polarized target �elds are not able to be
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reproduced accurately with this antenna con�guration. An alternative implementation or

con�guration of horizontally-polarized antennas will likely synthesize horizontally-polarized

�elds accurately.

3.5 Conclusions

In this chapter, we have demonstrated through simulation that a small anechoic chamber

(built with practical materials) can be successfully utilized as a MIMO-OTA test chamber

for the su�ciently-accurate synthesis of a vertically-polarized single-cluster Laplacian PAS

in a test zone under several frequencies and chamber con�gurations [12]. This investigation

serves as a �rst step to identifying the performance capabilities and limitations of a small

anechoic chamber in terms of test zone size, chamber size, number of probes, and frequency

range.

The con�guration of horizontally-polarized antennas such that a horizontally-polarized

target �eld (i.e. a target E �eld with Ŷ and Ẑ vector components) can be synthesized must

be investigated in future work, as our work showed that horizontally-polarized antennas

co-located with vertically-polarized antennas failed to accurately synthesize a horizontally-

polarized target �eld. One potential con�guration will be an array of horizontally-polarized

antennas in an array perpendicular to the array of vertically-polarized antennas, thus creat-

ing a �cross� of antennas at the bottom of the chamber. Another possibility is to create a

more extensive 2-dimensional grid of antennas at the bottom of the chamber for both hor-

izontal and vertical antenna polarizations, which may further increase the accuracy of the

synthesized �eld of both polarizations.

In general, the investigation in this paper found that frequencies of 700 MHz and 2.0 GHz,

Laplacian PAS distributions with standard deviations of 25 and 35 degrees, and a test zone
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radius of 10 cm have been shown to produce or nearly produce a su�ciently low re�ectivity

�gure in the test zone. Further study of probe number and chamber dimensions may expand

the capabilities of the chamber.

The use of actual horn antennas rather than ideal Hertzian dipole antennas in HFSS is

an important next step in future work. This will investigate the impact of non-ideal e�ects

such as coupling and re�ections between antennas that will lower the performance of the

system.

One �nal area requiring further study is the determination of complex antenna weights

from actual �eld measurements around the test zone. Measurements must be performed

using an antenna in the test zone to estimate the contribution of each probe antenna to

the �eld in the test zone. Previous work has been performed in this area [22] in order to

overcome near-�eld e�ects, re�ections and scattering in a ring chamber in generating a plane

wave. A similar procedure can be employed in a small anechoic chamber to overcome these

same non-ideal properties.
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Near-Field Channel Model Framework

The purpose of this chapter is to develop a mathematical framework for describing the

narrowband RF channel within a small anechoic chamber. This framework extends a complex

numerical model into a relatively simple mathematical approximation that can be applied

to both calculated and measured channels. This approximation serves as the basis for the

work in the following chapter, which expands this method to a re�ned wideband model. This

model can then be used for the purpose of MIMO system analysis, the ultimate goal of this

work.

The small chamber will most often utilize an array of log-periodic probe antennas with

�xed positions and orientations and an array of DUT antennas, which will be for the purpose

of analysis de�ned as dipole antennas. As a �rst approximation, a SISO channel between

a single log-periodic probe antenna (which consists of an array of co-polarized dipoles) and

a single dipole DUT antenna (of arbitrary orientation relative to the log-periodic array) is

modeled in free space.

Fig. 4.1 shows the breakdown of contributions in chapters 4 and 5. The contributions

for this chapter are emphasized in bold.

The �rst contribution of this chapter is the formulation of a numerical method for de-

termining the channel between arrays of dipole antennas with arbitrary orientations and

spacings, which can then be adapted to a general array consisting of the log-periodic an-

tenna (an array of dipoles) and an additional DUT dipole. In the literature investigated in

Chapter 2, every treatment of the near-�eld of dipole antennas and mutual-impedance makes
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Figure 4.1: Chapter 4 Contribution Flowchart

the assumption of co-polarized dipole antennas, which yields expressions and equations not

directly applicable to arrays of arbitrary orientation. Combined with transmission line the-

ory for feeding the log-periodic antenna, an impedance matrix relating each and every dipole

port is constructed, which can be used to relate currents and voltages, and in turn produce

an expression for the channel from the input of the log-periodic antenna to the output of the

DUT dipole.

The second contribution of this chapter is a justi�cation of the usage of plane waves

and point sources as joint basis functions for describing and modeling an arbitrary channel.

Modeling a channel as a function of DUT dipole position in terms of simple basis functions

is far less computationally-complex than computing the channel using the numerical method

described previously. In addition, basis functions that describe the numerical channel within

acceptable accuracy can be utilized to model measured channel data with additional super-

imposed features such as re�ections. This novel method of joint basis functions provides
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a reduction in the number of terms required to express the channel relative to using plane

waves as basis functions alone.

The �nal contribution of this chapter is a method to �t the joint basis functions, described

in the previous section, to a numerical channel or measured channel data. A correlation

method for iteratively �tting point sources to sampled or calculated data followed by selecting

a series of plane waves by performing Fourier analysis on the residual is utilized as a method

for selecting which basis functions to use for the channel model and determine the complex

weights of each basis function.

The following section (4.1) outlines the adapted numerical method for calculating the

channel between two ports in an arbitrary-orientation dipole array. Section 4.2 outlines the

justi�cation and advantage for the usage of point sources and plane waves as joint basis

functions. Section 4.3 proposes a method of �tting the joint basis functions from section 4.2

to channel data (calculated or measured), and illustrates the validity of the usage of joint

basis functions using a channel calculated from section 4.1.

4.1 Formulation of Channel using Dipole Arrays

The contributions of this section are as noted the �rst column of Fig. 4.1. In this

section, we extend the work of Orfanidis [19], extrapolating the work presented in chapter

25 (Coupled Antennas), Sections 1 through 5 for arbitrary-oriented dipoles instead of Z-

oriented dipoles, non-parallel dipoles, or coplanar dipoles. In addition, a four-term current

distribution approximation for each dipole is utilized instead of the sinusoidal assumption

due to the fact that some elements in a log periodic array will be signi�cantly longer than a

half-wavelength.

The motivation of this extension is to �nd the mutual- and self-impedance at each element
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in the system in free-space, which is used in a system of equations to �nd the voltage at

the receiving dipole or dipoles presented over a load for a unit input. This is the free-space

channel from probe input to receiver output, including near-�eld e�ects, coupling, and all

antenna properties. Because the far-�eld approximation does not hold (as the short distance

leads to non-planar wave fronts in the test zone, and �elds and gains that vary signi�cantly

in the proximity of the transmit antennas), the concept of antenna gain patterns and angle

of arrival have limited meaning, as electric �elds from one element to another do not follow

a typical distribution across the antenna as if the incident �eld was a plane wave with

de�nite direction of arrival. While re�ected wave components may exhibit a plane wave-like

behavior at the receiver due to the increased travel distance of the wave between transmitter

and receiver, the dominant line of sight �eld and some re�ections may not. In free space,

the only �eld of interest will be the line of sight case, meaning the line of sight case can

be analyzed for choice of channel approximation basis in the non-far �eld, as well as the

conditions in which this approximation of basis holds.

The free-space system that approximates the line of sight conditions of the channel to be

modeled is the �rst task in the choice approximation basis function. The channel of interest

to be modeled consists of probe antenna log-periodic arrays each with fourteen-elements,

oriented on a plane perpendicular to the X-Y plane and with bore sight aimed at the center

of the projection of the region of possible DUT positions onto the X-Y plane, and DUT

dipoles oriented in the Z direction, with centers located along a plane parallel to the X-Y

plane. As a �rst approximation, a single log-periodic antenna and a single dipole (SISO

channel) will be analyzed.
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4.1.1 Mathematical Channel Model with Arbitrary Dipole Orien-

tations

To model the channel from a log-periodic antenna to a dipole antenna, a mathematical

relation between the input of the log-periodic antenna and output of the dipole must be

established. To accomplish this, the current distribution on each antenna element and the

electric �elds of each antenna must be established, and the mutual- and self-impedances of

all elements must be calculated. Refer to Chapter 2, speci�cally 2.3, for the procedure of

deriving these values for dipole antennas.

A review of the �nal equations and variable de�nitions established in the preliminary

sections is reproduced here for clarity. Let a system of any arbitrary two antennas from the

dipole array be de�ned as antennas m and n, with arbitrary vector orientations r̂m and r̂n

respectively. Figure 4.2 illustrates the variables used in this system.

h
m

h
m

r̂m

rm0

rm0+hmr̂m

rm0-hmr̂m

rm0+αmr̂m

Im

ρm̂

Dipole m (Tx)

Dipole n (Rx)

z
m
r̂ m

ẑ

x̂

ŷ

Figure 4.2: Dipole Mutual Impedance Formulation
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The two dipoles have centers at ~rm0 and ~rn0 respectively, and half-lengths hm and hn

respectively. The �eld observation position vector from antenna m is now a position on

antenna n, ~rn0 + αnr̂n (antenna n center position vector plus a scaled version of antenna n

orientation vector r̂n, scaled by αn which can vary from −hn to hn) rather than an arbitrary

point in space. Using this de�nition, the variables zm and ρm, cylindrical coordinates of a

point on antenna n relative to the center of antenna m, can be related to the position on

antenna n with the following equation:

~rn0 + αnr̂n = ~rm0 + zmr̂m + ρmρ̂m (4.1)

zm and ρm can be calculated in terms of αn with vector projection and rejection as

performed in Chapter 2. These variables can be used to de�ne the electric �eld from

antenna m along antenna n, Er̂m(zm, ρm) + Eρ̂m(zm, ρm), or in terms of αn, ~Enm(αn) =

Er̂m(αn) + Eρ̂m(αn). Finally, this electric �eld can be projected onto the orientation vector

r̂n to determine the electric �eld component along antenna n, Er̂n(αn).

The current along each antenna (e.g. I(αm) along antenna m) is determined with a

numerical 3-term approximation as discussed in Chapter 2. Orfanidis de�nes a procedure

to numerically compute the current distribution of the antenna utilizing Hallen equation

solutions �with point-matching, pulse basis functions, and exact kernel withM = 100 upper-

half current samples� [19]. A detailed explanation of this process is provided in Chapter

2.

Using the current distribution and electric �eld equations, the mutual impedance of the

antenna n on the antenna m can be calculated. First, the induced open-circuit voltage on

antenna n due to antenna m is:
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Vnm,oc = − 1

In

∫ hn

−hn
( ~Enm(αn) · r̂n)In(αn)dαn (4.2)

where In is the short-circuit current at the center of antenna n (αn = 0). Finally, using

Im = Im(0) and In = In(0), and the open-circuit voltage equation 4.2, the mutual impedance

is de�ned as:

Znm =
Vnm,oc
Im

= − 1

ImIn

∫ hn

−hn
( ~Enm(αn) · r̂n)In(αn)dαn (4.3)

In addition to mutual impedance between each and every combination of elements in the

system (both within the log-periodic antenna and between the elements of the log periodic

antenna and the receiving dipole antenna), the self-impedance of each element must be

calculated. Figure 4.3 shows a horizontally-magni�ed dipole antenna m, with radius am. All

other variables remain the same as for the previously presented electric �eld analysis of dipole

m. The self-impedance can be calculated with the same formula as with mutual-impedance,

treating the surface of the antenna, ~rm0 +αmr̂m+amρ̂m, as the �second antenna� along which

the electric �eld is calculated for the impedance (4.3) [19]. Because the two aspects of the

same antenna are oriented identically in the r̂m direction, only the r̂m component of the E

�eld will be present in the impedance calculation.

The port of each dipole element in the M-element log-periodic antenna plus the port of

the single receiving dipole forms an M + 1 port network, as shown in Figure 4.4. Using the

procedures described to determine the mutual- and self- impedance of a pair of arbitrarily-

oriented dipoles, an impedance matrix for the M + 1 port network can be constructed, with

each element (i, j) of the matrix describing the trans-impedance of element i on element j.

The trans-impedance matrix can be converted to the trans-admittance matrix, necessary for
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Figure 4.3: Dipole Self Impedance Formulation

combining two networks in parallel, using the following relation:

YA = ZA
−1 (4.4)

In parallel with this network of coupled antennas is a feedline network that feeds each

antenna of the log-periodic array from a single excitation on port 1, as shown in Figure 4.5.

The feedline network does not feed the receiving dipole antenna. Because the coupling of

the feedline network onto the lone dipole and its load is signi�cantly less than the coupled

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 81



CHAPTER 4. NEAR-FIELD CHANNEL MODEL FRAMEWORK

IN
e
+
1A

VNe+1
+
-
+
-

Figure 4.4: Antenna Array and Dipole Port De�nitions

signal from the elements of the log-periodic array, it can be reasonably approximated as

zero admittance from any log-periodic port to the dipole port. The feedline network can be

described using transmission line theory; Stutzman and Thiele [51] present a feedline admit-

tance matrix in Section 14.10 of their text Antenna Theory and Design. This matrix, for the

log-periodic antenna alone, can be de�ned as YTLP
. Combining this with the zero admit-

tance from the log-periodic array to the dipole antenna, a total network feedline admittance

matrix can be de�ned in the following equation:
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Figure 4.5: Transmission Line Network De�nition

Finally, the admittance networks YT and YA are de�ned as in parallel for the 15 ports,

as in Figure 4.6. Because these two networks are in parallel, the admittance matrices can

simply be added to form the admittance matrix for the entire 15 port network.

Y = YA + YT (4.6)

The admittance matrix can be inverted to obtain the system impedance matrix Z = Y−1

for the entire network. The column vectors of the voltages and currents of the M + 1 port

network, as shown in Figure 4.6, are de�ned as ~V and ~I respectively. Applying the basic

relationship between currents and voltages at the ports of the network, we have ~V = Z~I.

If we rearrange this equation such that the right hand side equals zero, using an identity

matrix I, and combining the voltage and current vectors into a single column vector through

vertical concatenation, we have:
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Figure 4.6: De�nition of Parallel Admittance Networks

[
−I Z

] ~V
~I

 = ~0 (4.7)

In addition to this set of equations, we must de�ne two more to obtain a channel matrix

from this set of equations. The �rst is to de�ne the input voltage, V1 = 1 applied at port 1.

The added equation row will therefore have a 1 at the column corresponding to V1 in the

column vector, and has a 1 appended to the end of the right-hand side column vector. This

forces V1 to 1 in the system of equations.

Secondly, we know that the current at port M + 1 (IM+1), the dipole, times the load

impedance attached to the dipole, ZL, is equal to VM+1. Therefore, −VM+1 + IM+1ZL = 0.

The added row to the left hand side matrix should have -1 at the column corresponding
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to VM+1, and ZL in the column corresponding to INe+1, and zero appended to the column

vector on the right-hand side.


−I Z

1 ~0

~01 ~0ZL


~V
~I

 =


~0

1

0

 (4.8)

If we de�ne the left hand side matrix as A, and the right hand side vector as ~b, then the

vector of voltages and currents can be solved for by taking the pseudoinverse of A times ~b.

~V
~I

 = A†~b (4.9)

where A† is the pseudoinverse of A. Finally, the channel can be determined by taking the

ratio of the output voltage, VM+1, to the input voltage, V1.

H =
VM+1

V1
(4.10)

The channel can be described as a complex function of the positions, orientations, lengths

of all M + 1 elements, and frequency, using equations in this section. However, because M

of the elements are included in the log-periodic antenna, these elements are of �xed length

relations, related position and spacing, and common orientation. The receiver dipole will

also have a �xed length. As a result, the channel is a function of log-periodic position

and orientation, and dipole position and orientation. Due to the con�guration of the small

chamber for which the channel modeling is being performed, the log-periodic antennas can

be considered to have �xed position and orientation for a small number of discrete locations

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 85



CHAPTER 4. NEAR-FIELD CHANNEL MODEL FRAMEWORK

in the chamber. The receiver dipole, however, may be located anywhere near the chamber

center. In short, a meaningful channel model for the purposes of our analysis will be a

function of receiver position and orientation only. For simplicity, a single receiver orientation

is considered (Z-oriented) and a �xed position height is considered. As such, the channel

model in proceeding sections will be a function of X-Y receiver position and frequency only,

and a separate model will be determined for each of several de�ned log-periodic positions

and orientations.

4.1.2 Numerical Computation of Dipole Array Channel

A general procedure to numerically calculate the channel using the equations described

in the previous section is as follows. First, the position and orientation vectors, lengths, and

radii for each dipole in the system are de�ned, as well as the frequency of analysis. Next, each

and every pair of antenna elements i, j are selected pair by pair (including cases where i = j).

The current distribution along antennas i and j are calculated using point matching, pulse

basis functions, and King's 3-term approximation, as discussed in the previous section. This

approximation determines three �t coe�cients used in standard expressions for accurately

modeling current distribution. The current distribution for antenna i is used in integral

equations de�ning the electric �eld due to i at points along antenna j. The electric �eld

along j due to i is used in conjunction with the current distribution on j in integral equations

to determine the mutual impedance of j on i.

Each of these integrations is performed using the Gauss-Legendre method, a numerical

method of approximating an integral, which �rst algorithmically selects a vector of locations

along the antenna being integrated over and corresponding weights. The integrand is then

evaluated at each of the locations in the vector along i. Finally, the vector of integrands
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is multiplied by the corresponding weights and summed, with the sum approximating the

integral. For each point αj selected along j, use Gauss-Legendre to calculate the electric �eld

due to i on j, ~Eji(αj), (and in turn the entire integrand for the mutual impedance equation),

then use Gauss-Legendre again to calculate the integral in the mutual impedance (4.3). If

i = j, then perform the procedure using the surface of the antenna (at the radius of the

dipole) as antenna j and the center of the antenna as antenna i; both have identical sample

points along the antenna and identical current distribution.

Populate an impedance matrix with the mutual- and self-impedances calculated with

double Gauss-Legendre integration. Take the inverse of this to produce the admittance

matrix of the antenna network, YA. Calculate the transmission line network admittance

matrix between the log periodic elements YTLP
using the procedure discussed in the previous

section, and then form the matrix YT as in (4.5). Sum the admittance matrices to determine

the system admittance matrix Y as in (4.6). Take the inverse of Y to obtain the system

impedance network Z. Using (4.8) to relate the voltages and currents of the system, de�ne

unit excitation at the input port of the log-periodic antenna, and the dipole voltage equal

to the dipole current times the antenna load, and solve the system of equations using (4.9).

Finally, extract the voltages at the log-periodic input and dipole output, and calculate the

channel as in (4.10).

As explained in the previous section, we wish to model the channel as a function of

DUT dipole position and frequency. Using the procedure just described, the channel can

be calculated for a series of DUT dipole locations comparable to a range of DUT dipole

locations in the chamber being modeled.
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4.1.3 Numerical Computation Setup and Results

The described numerical computation method is applied to a fourteen-element log-periodic

and dipole antenna of typical position and orientation in a small anechoic chamber. An oper-

ating frequency of 5.45 GHz is chosen, at the center of the 5 GHz ISM bands. An Octoscope

BOX-38 small anechoic chamber has interior dimensions of 81 cm width (x), 55 cm depth

(y), and 49 cm height (z). The receiving dipole in this simulation is a z-oriented half-wave

dipole (with λ corresponding to 5.45 GHz), and with a center z coordinate �xed at 15.3 cm

(to match the dipole z coordinate in a subsequent measurement campaign). The x and y

positions are varied in an approximately 22 cm by 19 cm rectangular test zone (large enough

to include most small devices under test (DUT)) centered on the center of the chamber

�oor. The log periodic antenna is modeled after the probe antenna used in conjunction with

Octoscope's BOX-38 for WiFi testing. It has a value of τ = 0.85, and element lengths from

0.64 cm to 6.2 cm. The coordinate of the tip of the log periodic antenna is approximately

(0.7,-0.44, 0.27) in meters with the bottom/back/left of the chamber de�ned as the origin

and the up/away/right directions when facing the front of the chamber are the positive di-

rections of the x, y, and z axes respectively. The orientation of the dipole is boresight in

the direction of the center of the interior bottom �oor of the chamber, along a plane per-

pendicular to the �oor of the chamber. Fig. 4.7 illustrates the system as described, with

the black outline representing the boundaries of the chamber interior, the green rectangle

representing the boundaries of the test zone along which the blue dipole will move, and a

red fourteen-element log-periodic antenna near the front/right/top corner of the chamber.

As a �rst-approximation, the system is modeled as the log periodic and dipole antennas in

free-space, without any interactions with the chamber.
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Figure 4.7: Modeled System for Numerical Computation

The channel between the log periodic input and dipole output is calculated on a grid of

17 evenly-spaced x by 14 evenly-spaced y receiver positions spanning the entire test zone,

resulting in test zone sample spacings of 0.26 λ in the y direction and 0.25 λ in the x

direction. Because the system is only being analyzed with a single frequency excitation,

the free-space electric �eld should be limited to a spatial period of λ in any direction, and

therefore sample spacing should be at most 0.5 λ in each direction if discrete Fourier analysis

is to be performed on the sampled �eld. This will be important in subsequent sections, so

a sample spacing choice that meets this requirement was selected to meet this requirement.

Using the sample spacing of the channel (which is proportional to the electric �eld) of 0.25

λ is a sample density of approximately double the minimum requirement, and is therefore

su�cient to prevent aliasing in Fourier analysis. This will also allow the observation of
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spatial variation of the electric �eld phase structure (or more speci�cally, the structure of

the corresponding channel) which will aid in selection of modeling functions.

The following plots show the resultant channel between the log periodic antenna and

dipole antenna for dipole positions over the test area de�ned above. Fig. 4.8 shows the

channel magnitude versus dipole position. As expected, if one considers the gain patterns of

dipole antennas and log periodic antennas, one would expect the channel to have lower gain

when the signal propagates away from the log periodic antenna at an angle farther away from

boresight (e.g. when the receiver is below the boresight direction of the antenna) and when

the signal propagates toward the dipole from a direction approaching parallel to the dipole

orientation, even in the case of close proximity. The log periodic antenna is located beyond

the lower right corner of the x and y range of the plot, and this corner of the plot has slightly

decreased gain relative to the rest of the test zone despite closer proximity as expected. The

remainder of the test zone has a path from transmitter to receiver in higher gain regions of

the transmit and receive antenna gain patterns, so we expect that the channel magnitude

would slowly fall o� with increased distance between transmit and receive antennas, which

is exactly what happens; the channel gain slowly rolls o� as the receiving antenna moves

towards the upper left part of the plot. In short, the magnitude of the numerical channel is

as expected.

Fig. 4.9 shows the channel phase shift versus dipole position. Due to the relatively

coarse sampling of the channel over the test zone, combined with the discontinuity as phase

transitions from −π to π, the interpolated phase plot is quite jagged along the discontinuity.

Despite this, it is clear that the equiphase fronts have a well-de�ned curvature, emanating

from a point or region located below the lower right corner of the plot, exactly where the

antenna is located. Therefore the phase of the numerical channel is also as expected.
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Figure 4.8: Magnitude of Channel Vs. Dipole Position
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Due to the presence of curved wave fronts almost as if emanating from a point in space, it

is logical to consider using a complex-weighted �eld from a point source as a �rst approxima-

tion of the channel. To re�ne the channel, a spectral decomposition of the residual from the

point source can be used to select dominant plane wave components and their corresponding

weights to be summed with the weighted point source approximation. The following section

outlines the theory behind this method, a procedure for its implementation, and validation

of the model error relative to the modeled numerically-computed �eld.

4.2 Dipole Array Channel with Spatial Attribute Func-

tion Decomposition

The second contribution of this chapter, as noted in the second column of Fig. 4.1,

is presented in this section. We investigate a spatial modeling framework as presented by

Smith in his course on Spatial Data Analysis, speci�cally from the section on General Spatial

Prediction Models [52]. Here we model a deterministic �global� trend µ(~r) (where ~r is spatial

position in the observation region) from the sampled spatial channel H(~r). In the following

chapter we analyze the statistical properties of the residual ε(~r), where ε(~r) = H(~r)− µ(~r).

In [52], the global trend µ(~r) is modeled as the weighted sum of spatial attribute functions.

A spatial attribute function is a smooth, �nite and continuous function over a sampled

observation region (in our case, the rectangular test zone). Each spatial attribute function

xk(~r) is weighted by a constant term βk (which is determined through �tting of the spatial

attribute functions to the sampled data). A constant term β0 is included in the model to

include any constant mean term over the sampled region. This sum of weighted spatial

attribute functions de�nes the global trend as µ(~r) = β0 +
∑K
k=1 βkxk(~r), where K is the

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 92



CHAPTER 4. NEAR-FIELD CHANNEL MODEL FRAMEWORK

number of spatial attribute functions. Let X be a matrix where each row corresponds to

each observation position ~rj of J observation positions. The �rst column, column 0, of X

is populated with 1 + i (corresponding to a complex β0). Each subsequent column k is

populated with the value of xk(~rj). The size of X is therefore J by K+1. Assign β0 through

βK to a column vector ~β, containing all K + 1 complex weights. Using X and ~β, a vector of

global trend values at each observation point can be de�ned as in (4.11).

~µ = X~β (4.11)

This can be used in the expression for the residual as in (4.12).

~ε = ~H −X~β (4.12)

If we assume that ~β should be chosen to minimize the residual ~ε, we can use ordinary

least squares to solve for ~β that best �ts the spatial attribute functions to the observed data

at the observation points. This leads to the additional restriction that the spatial attribute

functions are pair-wise linearly-independent over the set of observation points, and thus X′X

must be non-singular [52]. The least squares solution of ~β is de�ned as in (4.13), which uses

the Moore-Penrose pseudoinverse of X.

~β = (X′X)−1X′ ~H (4.13)

It should be noted that X′X forms a Gram matrix, each entry of which is in essence an

inner-product over all observation points for each pair of spatial attribute functions (basis

functions; each column of X corresponds to the basis function evaluated at every observation
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point). Diagonal-dominant matrices (i.e. ones where for each row the magnitude of the

diagonal element is greater then the sum magnitude of all other elements) have the property

of being non-singular [53]. Therefore choosing spatial attribute functions that make the

Gram matrix diagonal-dominant would make it non-singular. If we can make non-diagonal

elements of the Gram matrix small (either by pair-wise inner product threshold enforcement

or by other properties of chosen functions), then we can make the Gram matrix diagonal-

dominant, and thus non-singular.

4.2.1 Plane Waves as Spatial Attribute Functions

One candidate spatial attribute function is a plane wave. Any function in space can be

described as the sum of an in�nite number of three-dimensional plane waves. Each plane

wave is described by a wave vector ~k (de�ning spatial frequency and direction of travel),

observation position ~r, and complex weight containing of magnitude and phase information

E0. The plane wave equation Eqn. 4.14 is:

EPW (~r) = E0e
−j~k·~r (4.14)

A three-dimensional Fourier Transform of a spatial function will express that function in

terms of its wavenumber spectrum. Mersereau and Speake [54] illustrate the properties and

use of multidimensional Fourier transforms, with discussion in terms of complex exponentials

and general spectra rather than plane waves and wavenumber spectra, however the same

general principles apply. Using spectral theory, if this spatial function is sampled in each

dimension with sample spacings at most equal to the inverse of double the spatial frequency

in any direction, and sampled over the entire volume of the desired signal volume, then the

three-dimensional Discrete Fourier Transform (DFT) of the sampled signal will produce a
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discrete wave vector spectrum [54].

The discrete wavevector spectrum has coordinates consisting of the wave vector ~k of a

plane wave, with the function value at that coordinate equal to the complex weight E0 of

the plane wave of that wave vector. Each of the unweighted exponential plane waves (e−j
~k·~r)

can be considered a spatial attribute function of the sampled signal, and the weights of each

attribute function E0 can be considered a corresponding β as de�ned in the previous section;

the sum of weighted plane waves will reconstruct the sampled signal [54].

Certain aspects of discrete, space-limited spatial sampling must be considered in a similar

way to signals sampled in time. The spatial sampled signal should be windowed to reduce

false high-frequency components formed by the DFT algorithm (where the sampled region

itself is assumed periodic itself in space, which would be discontinuous as opposite edges of

the arbitrary sampled region are not continuations of each other. Discontinuities between

assumed periods of a spatially-periodic signal contain frequency content that does not exist

outside the context of assumed periodicity of a truncated sampled signal, and do not exist

in reality). Also, the spatial sampled region may be zero-padded to increase wave vector

resolution, and more accurately determine the wave vector of each spatial attribute function.

Without zero padding, wave vector content between wave vectors in the wave vector domain

will leak to surrounding wave vectors. Zero padding interpolates values in the wave vector

domain, and will reach a peak at the wave vector of the actual dominant spectral component.

The wave vector at the peak can then be extracted. It should be noted that while both

windowing and zero padding will provide a more accurate picture of the wave vector content

of a signal, the original signal has been altered prior to analysis and therefore values of the

DFT output will no longer correspond to the exact complex coe�cients for each wave vector

and its corresponding plane wave.
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Modeling a spatial function as an in�nite sum of plane waves, or even a sum of every

plane wave produced by a DFT, produces a cumbersome or impossibly large set of spatial

attribute functions to be a useful channel model. A modest sacri�ce of accuracy for a

reduction in number of terms can be achieved by setting a minimum magnitude threshold

for frequency domain components, and extracting only plane wave functions with weights

exceeding this magnitude. Careful selection of this threshold must be performed to meet a

desired or required accuracy, or alternatively, peak spectral components can be iteratively �t

and removed until this level of accuracy is achieved. Utilizing the wave vector spectrum of a

zero padded, windowed spatially sampled function allows for increased wave vector accuracy

with each iteration (as well as avoidance of false peaks caused by the discontinuity due to

assumed repetition of the sampled region), and as a result, fewer plane waves can be used

to model a spatial function to a desired degree of accuracy.

In regards to plane waves in two and three dimensions, a plane wave in three dimensions

is de�ned by a three-dimensional wave vector, and a three-dimensional plane wave observed

on an arbitrary plane will appear as a two-dimensional plane wave with a wave vector equal

to the projection of the three-dimensional wave vector onto the plane of observation. This

results in a two-dimensional wave vector. If we assume that the observation region is on

the X-Y plane, then the projection of the 3-D wave vector onto this plane is simply the

x- and y- components of the wave vector, with the z-component discarded. The reasoning

for this is that along the X-Y plane, the z component of the position vector is constant.

The constant position z-component occurs in the plane wave exponential multiplied by the

z-component of the wave vector, resulting in a constant additive term in the exponential

function. This constant additive term can be factored out of the plane wave exponential

as a constant phase shift term, leaving the plane wave term in terms of x and y position

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 96



CHAPTER 4. NEAR-FIELD CHANNEL MODEL FRAMEWORK

only and their corresponding x and y wave vector components, which is the de�nition of a

2-D plane wave. Therefore a signal sampled in two-dimensional planar space, which consists

of a sum of 3-D plane waves, can be modeled as a sum of 2-D plane waves. The wave

vectors of these 2-D plane waves on the plane of interest can be determined using a two-

dimensional Discrete Fourier Transform of the spatially-sampled function. Subsequently, the

spatial attribute functions for the channel model can be reduced to 2-D plane waves if the

observation region exists along a 2-D plane, thus reducing the complexity of the problem.

(Also, without extending the sample space to include sampling along a third dimension, no

spectral information along the third dimension can be ascertained.)

One �nal attribute of plane waves is how to ensure the pair-wise inner product of two

plane waves is su�ciently low over all sample points in the observation region. Wave vectors

extracted directly from the DFT output of the sampled function (without zero padding) will

have integer-related periods over all spatial dimensions, and as a result are guaranteed to

have a pair-wise inner product of zero over all sample points. However, as discussed before,

spectral leakage due to spectral content falling between sampled wave vector points require

multiple plane waves to represent that content, increasing model complexity. If wave vectors

are determined from peaks of the DFT of the zero-padded function, the pair-wise wave vector

spacing between plane waves is no longer guaranteed to produce an inner product of zero

over the sampled region, which may result in a non-diagonal-dominant Gram matrix (which

may not be non-singular). If the peaks of the zero-padded signal are used to determine

wave vectors, then a test to exclude plane waves that have a pair-wise inner product above

a de�ned threshold can be implemented. At the very least, a test to ensure a Gram matrix

is non-singular should be implemented upon each additional chosen plane wave.
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4.2.2 Point Sources as Spatial Attribute Functions

A second candidate spatial attribute function is a point source, the free-space Green's

function solution to the Helmholtz equation [19]. This exponential function has the form:

EPS(~r) =
e−jk||~r−~r0||

4π||~r − ~r0||
(4.15)

where k is the wave number of the point source, ~r is the observation position vector in space,

and ~r0 is the point source position vector in space. The point source function occurs as a

kernel in the integrals found in the dipole channel formulation in Sec. 4.1. Because integrals

can be approximated as weighted Riemann sums of the arguments, it follows that the dipole

electric �eld (and thus the dipole channel) could be roughly approximated with one or more

weighted point sources.

Using point sources as an approximation function poses two problems. First is deter-

mining the location of each point source from sampled data. A method must be developed

that can determine if sampled channel points contain an underlying signal that correlates

to a point source at a speci�c point. Next is determining if each pair of point sources has

a su�ciently low inner-product over the set of sample points, and excluding point sources

that have a high inner product with previously selected point sources. This is important

for creating a non-singular Gram matrix as explained in the previous section. With these

two problems solved, a least-squares method can be utilized to determine the weights of the

point sources that minimize the residual of the estimated channel.
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4.2.3 Point Source Location

To solve the initial problem of locating one or more point sources, it is helpful to visualize

a point source �eld, and its observation on a rectangular plane. Fig. 4.10 illustrates surfaces

of constant phase from a point source. For a selected constant arbitrary phase, a point

source excitation with constant wavenumber k = 2π
λ
, will have concentric spherical wavefronts

corresponding with the selected arbitrary phase, each separated by the wavelength λ from

the previous and subsequent wavefront. This is illustrated in Fig. 4.10 by the two red line

segments, each labeled λ. In geometrical optics, these constant-phase surfaces are known as

Eikonal surfaces [51].

If these Eikonal surfaces from a point source are observed on a �at rectangular observation

region, as represented by the black rectangle in the �gure, arc-shaped wavefronts are observed

(Eikonal curves). The separation of these Eikonal curves along the plane are not λ and are

not uniformly-spaced (as the point source is not co-planar with the observation region, and

therefore the plane is not normal to the Eikonal surfaces). It should be noted that the

observed phase in Fig. 4.9 has arc-shaped Eikonal curves similar to those in 4.10, which

indicates that a point-source spatial attribute function may be a logical choice.

Any Eikonal surface pattern in a planar 2-dimensional sample region can be formed by

a single point in a half-space above the plane of observation, and the re�ection of that point

in the half-space below the plane of observation. If we know which half-space in which

the antenna is located, which is where the �eld originates and therefore where point source

approximations should be located, we can determine a single, unique point from a set of

Eikonal surfaces.

Keeping the wavenumber k of the analyzed system constant (and thus keeping frequency
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Figure 4.10: Visualization of Point Source Wave Fronts

and wavelength constant), a sampled channel in the rectangular observation region will

consist of complex samples at each point, containing amplitude and phase information. The

expected contribution of a point source at an arbitrary location ~r0 can be calculated at each

and every observation point, and a correlation between the point source contribution and

the sampled channel can be calculated. If the phase fronts (and as a result all phases) in the

point source and an underlying component of the sampled channel align, then the magnitude

of the correlation will be high.

Utilizing this property of high correlation at a likely point source, we can perform a

global search of point sources ~r0 in the upper half-space above the observation plane to

maximize the correlation between the point source and the sampled channel. The value of ~r0

at the maximum is a likely candidate point source. The sampled channel as a result contains
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the Eikonal surface structure within the sampled data. This optimization problem can be

expressed as in (4.16):

~̂r0 = arg max
~r0|~r0z>rz

|
N∑
i=1

H(~ri)e
jk||~ri−~r0||| (4.16)

where ~̂r0 is the estimated point source location, ~r0 is an arbitrary point source location, N

is the number of channel sample points, rz is the z-coordinate of the observation region,

and H(~ri) is the sampled channel at observation point ~ri. A correlation threshold can be

speci�ed such that no value of ~̂r0 is returned if the maximum value of the argument is below

this threshold. This threshold value can be selected through experimentation, and can be

used to prevent the selection of a point source if su�cient correlation with the sampled data

is not achieved.

The estimated point source at ~̂r0 from phase correlation maximization can then be �t

to the observed channel data using least squares to obtain a complex coe�cient and then

subtracted from the sampled channel data to obtain a residual. Subsequent point sources

can iteratively be extracted from and �t to the residual. However, care must be taken when

selecting additional point sources to ensure a low inner-product with other point sources,

which in turn will help prevent a singular Gram matrix.

4.2.4 Inner Product of Point Sources

With the determination of each additional candidate point source, a su�ciently-low inner

product between it and every previous point source should be enforced, with new points

with a high inner product being excluded for inclusion in the model. While performing

this calculation for each and every candidate point is possible, an additional constraint on

the optimization problem described in the previous section can be enforced to increase the
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chances of �nding a candidate point source with a low inner product with other previously-

selected point sources.

Engquist and Zaho [55] investigated the separability of Helmholtz Green's functions at

high frequencies. This paper establishes bounds on the inner-product between two point

sources in an observation region as a function of their separation from each other and the

observation zone. The formulation in this paper was too complex to implement as a con-

straint function for optimization. However, the principle that the inner product of two point

sources decreases over an observation region as the separation increases provided motivation

for performing a numerical analysis and empirical distribution of inner product versus point

source separation distance.

For an observation zone matching the dimensions of the numerical computation sample

zone in Sec. 4.1.3, a grid of sampled observation points with separation of λ
20

in both X and

Y directions was established, and a 3-dimensional grid of potential source points spanning

the width and height of the chamber and the depth of the chamber from a depth of a half-

wavelength behind the observation zone to the rear of the chamber. The source point grid

has a spacing of λ
3
in the X, Y , and Z directions. Every inner product (i.e. cross-correlation)

of each possible combination of source points in this region was calculated, resulting in over

166 million separations and cross-correlations. Fig. 4.11 is a histogram normalized such that

the integral of each vertical slice equals one (and is thus a PDF for a given separation).

We can see that as point sources increase in separation, the probability of the cross-

correlation being very low increases signi�cantly. At a separation of 6λ, the probability of an

cross-correlation being below 0.1 is nearly 1.0. Conversely, when the separation is less than

0.5λ, the probability of the cross correlation being above 0.8 is nearly 1.0. Essentially, this

indicates that a minimum point source separation of somewhere between 0.75λ and 2λ would
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Figure 4.11: Normalized Histogram of Cross-Correlation Vs. Separation

be su�cient to increase the probability of a low cross-correlation to be signi�cant enough to

investigate. Setting a minimum separation too high may exclude valid candidate points that

would increase the accuracy of the model, while setting the minimum separation too low

would increase the number of points excluded due to the inner-product being above a set

threshold, and therefore the computational time of the algorithm searching for new points

that meet this threshold requirement.

Signi�cant testing of manual adjustment of the minimum separation and cross-correlation

threshold with measured channel data yielded a minimum separation of 0.75λ and cross-

correlation threshold of 0.08, which allowed the multiple point source correlation algorithm

to run with su�ciently-small error and reasonable run time. More detail on the channel

measurements used for this process will be discussed in the following chapter.
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4.2.5 Use of Point Source and Plane Waves as Joint Spatial At-

tribute Functions

Plane waves and waves from a point source are related. Using the concept of Eikonal

surfaces, plane waves contain planar Eikonal surfaces separated by a wavelength λ, and

have constant amplitude over space. At a large observation distance, over a relatively small

observation region, the local Eikonal surfaces of a point source are approximately planar

due to a small spherical sector solid angle and large spherical sector radius ||~r − ~r0||. Also,

the relative change in radius, δ, from the point source over the distant observation region is

small relative to the radius from the point source (i.e. ||~r − ~r0|| >> δ), and therefore the

point source coe�cients 1
4π||~r−~r0|| ≈

1
4π(||~r−~r0||+δ) , yielding a nearly-constant amplitude across

the observation zone. As a result, in a small observation region distant from a point source,

the planar Eikonal surfaces and constant amplitude indicate that a distant point source is

approximately a plane wave. Therefore, a joint usage of close point sources and plane waves

is essentially equivalent to using purely point sources (with some close and some very distant)

to model the channel. However, even though these spatial attribute functions are essentially

the same, we can utilize the special shape properties of Eikonal surfaces of near point sources

and the Fourier properties of plane waves to �t each to a data set in an observation region

and generate a model.

4.3 Fitting of Spatial Attribute Functions to Numerical

Channel

The third contribution of this chapter is presented in this section, as noted in the third

column of Fig. 4.1. The methods of phase correlation maximization as outlined in Sec. 4.2.3
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and spatial spectral decomposition as outlined in Sec. 4.2.1 are combined into a procedure to

model the channel. The following procedure is performed on data sampled in an observation

region that meet the previously-outlined spatial Nyquist sampling requirements.

This method can be utilized to reduce the total number of components (plane wave plus

point sources) required to model a signal (or in this case a channel) when compared to a

pure sum-of-plane waves model, thus reducing model complexity.

4.3.1 Point Source Fitting

The �rst part of the procedure involved determining point sources and corresponding

complex weights of the sampled channel. This utilizes methods discussed in Sec. Sec. 4.2.3.

1. Collect the sampled channel data H(r̃) at all measurement points r̃ in the observation

region for a single wavelength λ.

2. De�ne a search region for point sources ~r0 for the correlation maximization algorithm.

3. De�ne minimum point source separation constraint 0.75λ and maximum inner-product

for point source pairs (0.08).

4. Run a global optimization routine on ~̂r01 = arg max~r01 |~r01z>rz
|∑N

i=1H(~ri)e
jk||~ri−~r01 ||| to

determine an initial point source ~̂r01 .

5. Calculate the contribution of the point source ~̂r01 at each observation location r̃:

EPS1(r̃).

6. Use least squares to calculate the complex weight β1 of the point source that best �ts

the sampled channel data and minimizes the residual ~ε1(r̃), H(r̃) = β1EPS1(r̃) + ~ε1(r̃).

7. Calculate the residual ε1(r̃) after the least squares �t.
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8. Repeat steps 4 through 7 using ~ε1(r̃) instead of H(r̃), with the optimization in step 4

subject to the constraints de�ned in step 3, to calculate ~̂r02 , EPS2(r̃), β2, and ~ε2(r̃).

9. Repeat step 8 using ~ε2(r̃) instead of ~ε1(r̃), then ~ε3(r̃) instead of ~ε2(r̃), to calculate as

many point sources ~̂r0n and complex weights βn as needed, either an arbitrary number

or until a point source is under a de�ned correlation threshold. The �nal residual ~εn(r̃)

will be used for re�nement with plane waves.

4.3.2 Re�nement Using Plane Waves

The residual from the point source �tting, ~εn(r̃), is then modeled with plane waves

iteratively until a desired accuracy is reached.

1. Using the residual ~εn(r̃) over all measurement points r̃ in the observation region for a

single wavelength λ, apply a 2-dimensional Hanning window and zero pad the data in

both X and Y directions until the desired DFT frequency resolution is obtained.

2. Perform a 2-dimensional DFT on the data from step 1. Calculate the wave vectors for

each point in the frequency domain.

3. Find the wave vector ~k1 corresponding to the maximum of the DFT output. This is

the wave vector of the �rst plane wave to be �t.

4. Calculate the contribution of the plane wave EPW1(r̃) = e−j
~k1·~r at each observation

point r̃.

5. Perform a least squares �t of the plane wave to the point source residual ~εn(r̃) to

�nd the value βPW1 that minimizes the plane wave residual ~εPW1(r̃) in the equation:

~εn(r̃) = βPW1EPW1(r̃) + ~εPW1(r̃).
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6. Determine the residual ~εPW1(r̃) after the least squares �t.

7. Perform steps 1 through 6 using ~εPW1(r̃) instead of ~εn(r̃) to �nd βPW2 and ~εPW2(r̃).

8. Repeat step 7 replacing the previous residual with the new residual each time to cal-

culate βPWn and ~εPWn(r̃).

9. Stop this procedure when the mean Error Vector Magnitude (EVM), the mean mag-

nitude of the residual, is below a de�ned threshold.

4.4 Validation of Spatial Attribute Function Selection

with Numerical Channel

The algorithm de�ned in the Sections of 4.3 was performed on the numerical dipole

array channel developed in Sec. 4.1.3. The mean and standard deviation of the Error

Vector Magnitude (EVM) of di�erent combinations of point sources and plane waves to

determine the e�ect of each type of (and number of each) spatial attribute function on

the accuracy of the model. Models consisting of only point sources and only plane waves

were also calculated using just the appropriate half of the algorithm in the previous section.

Finally, the value of mean plus 1 standard deviation of the EVM of each case is observed,

indicating that approximately 84 percent (50 percent plus one σ) of EVM from the model

over the observation area is below the stated value.

Figure 4.12 is a plot of the LogNormal mean EVM for between 0 and 3 point sources

(spherical components) and 0 and 5 plane waves (planar components). For 0 point sources

and 0 plane waves, the error is 0 dB, or 100 percent error, by de�nition (nothing modeled).

A model consisting of a single point source and no plane waves provides an EVM of -18.3
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dB, meaning that on the average, the error signal contains 1.5 percent of the power of the

channel being modeled. A single plane wave without any point sources, on the other hand,

has an EVM of -8.2 dB. Four plane waves are required to achieve an EVM less than a single

point source. This indicates that a point source is an excellent initial choice of a spatial

attribute function!
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Figure 4.12: LogNormal Mean EVM For Combinations of Spatial Attribute Functions

As expected, additional point sources do not decrease the EVM by a signi�cant amount.

The point sources are modeling free-space radiation from a relatively small antenna array.

The minimum separation constraint for subsequent point sources after the �rst is at least

0.75λ, putting the second or third point source in a region away from the antenna for which

the channel is being modeled. As a result, the second and third point sources had very

low maximum correlations, and had very low magnitude coe�cients when �t to the residual
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data. As a result, they had extremely low contribution to the model, and while they do no

harm to the model, these point sources can be excluded. It should be noted that the system

being modeled in this case is free-space and involves no re�ections; additional point sources

will be useful in modeling source re�ections, as will be seen in the following chapter.

Finally, we observe combinations of point sources and plane waves, as the plane waves

serve to re�ne the point source model. With one point source and two plane waves, a mean

EVM of -24.7 dB is achieved. One point source and 5 plane waves achieves a -26.9 dB EVM.

As the number of plane waves increases, the advantage of the point source component of the

model is still present, though its bene�t decreases. The clear bene�t of a joint point source

and plane wave model is in models with a relatively low number of terms, and produces

signi�cantly lower EVM than a comparable number of plane waves alone.

In terms of standard deviation, models of only a couple plane waves have a standard

deviation of between 1.5 dB and 2 dB, models of only point sources have about 2 dB standard

deviation, and combinations have between 2 dB and 2.5 dB. This is illustrated in Fig. 4.13.

In Fig. 4.14, we observe mean plus σ, meaning that 84 percent of modeled locations

are as accurate as the value in this plot. Because the standard deviations were relatively

constant between 1.5 and 2.5, very little changes in terms of the advantage of point sources

and combinations over plane waves alone, though the gap closes a small amount. Even a

single point source still has 84 percent of EVM below -16.3 dB.

In short, the low EVM for a relatively low number of spatial attribute functions indicates

that point sources, and joint point sources and plane waves are validated as an e�ective way

of modeling the synthetic numerical dipole array channel with an acceptable accuracy of

between -15dB and -20dB or better. This modeling algorithm will be applied to real channel

measurements in the following chapter.
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Figure 4.14: LogNormal Mean + 1 SD EVM For Combinations of Spatial Attribute Functions
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4.5 Conclusions

The channel modeling algorithm presented in this chapter has been validated to produce

acceptable error for a small number of spatial attribute functions, and therefore is e�ective

as a modeling tool for relatively simple, accurate description of the channel between a log-

periodic array and a dipole antenna. Given the principles outlined in this chapter, it could in

theory be adapted to other antenna types and environments for investigation and modeling

of other channels, both real and synthetic. In addition, additional variables could be added

to the model, such as transmitter antenna position and orientation, and receiver orientation

and/or vertical position. A combination of point source and plane waves would still be

su�cient for description of such channels, however the number of each type of basis function

will vary depending on the environment, including receiver observation zone size, distance

between transmitter and receiver, number of re�ections and the power of each re�ection,

and physical size of transmitter and receiver arrays. The next chapter will investigate a real,

non-free-space system in which added factors such as re�ections will be introduced.
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CHAPTER 5

Statistical and Frequency Extensions of

Near-Field Channel Model

The purpose of this chapter is extend the mathematical framework derived in the previous

chapter to incorporate statistical information from the spatial attribute function residual,

as well as extend the model as a function of frequency. This produces a model that has

improved EVM over the spatial attribute function �tting method alone, and is broadband.

In addition, this chapter utilizes channel measurements taken inside a small anechoic test

chamber between log-periodic probe antennas in four locations and a receiver dipole antenna

placed along a grid to sample the channel space. The models for each probe antenna resulting

from this measurement campaign can therefore be combined to calculate a MIMO channel

between the probes and an arbitrarily-positioned receiver dipole array. The MIMO analysis

of this channel model will be performed in the next chapter.

Fig. 5.1 shows the breakdown of contributions in chapters 4 and 5. The contributions

for Chapter 5 are emphasized in bold.

The �rst contribution of this chapter is to improve the accuracy and EVM of the channel

model presented in the previous chapter utilizing statistical information from the residual of

the �tted spatial attribute functions. This is achieved by applying methods of Geostatistical

Regression [56] [52] and Complex Geostatistical Kriging [57], methods taken from the �eld

of Geostatistics (so-called due to its original application to Geology and mining). This �eld

of analysis focuses on statistical properties of random signals in space (or space and time),
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Figure 5.1: Chapter 5 Contribution Flowchart

and the use of these statistics in conjunction with spatial measurements to estimate the

signal at any location. This application is new and novel, as no application of this �eld to

spatial channel modeling has been found in the literature. In addition, no use of Complex

Geostatistical Kriging in conjunction with the iterative process of Geostatistical Regression

has been located in the literature.

The second contribution of this chapter is extending our narrow-band model, which de-

termines spatial attribute functions, complex weights, statistics, etc. at a single frequency,

to a broadband model as a function of frequency. Using a common set of frequency-scaled

spatial attribute functions, complex weights for each are determined over a wide range of fre-

quencies, and a polynomial regression is performed to determine a function for each weight as

a function of frequency. This extends our novel Geostatistical channel model to a Wideband

Geostatistical channel model.

Sec. 5.1 outlines the methods of Geostatistical Regression and Complex Geostatistical
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Kriging, and combines the two into a complex iterative Geostatistical Regression algorithm

for spatial attribute function determination. Sec. 5.2 presents a method of adapting spa-

tial attribute functions over a wide frequency band, and modeling the complex function

coe�cients as a function of frequency, yielding a Wideband Geostatistical model. Sec. 5.3

describes the system being modeled in detail, while Sec. 5.4 explains the measurement cam-

paign performed on that system. Sec. 5.5 applies the Wideband Geostatistical modeling

process on the measurement data to produce a model for the measured system.

5.1 Accurate Method of Fitting Spatial Attribute Func-

tions to Measured Data

The method of ordinary least squares (OLS), utilized in the previous chapter for �tting

each spatial attribute component to the sampled channel (or subsequently the residual of the

sampled channel after each �tted spatial attribute function (SAF) is subtracted), can be used

to simultaneously estimate the complex coe�cients of each SAF. The system can be modeled

with a matrix X, where each column is a spatial attribute function, and each row is a channel

sample location (in other words, each element is the value of an unweighted spatial attribute

function evaluated at a sample location). In addition to the spatial attribute functions, an

additional column is added to the matrix consisting of a unit constant, which will correspond

to a complex additive constant (an extra value to be determined in the vector of complex

weights to be estimated) to force a zero-mean residual. X is multiplied by a column vector of

complex weights for each spatial attribute function, ~β, which can be calculated to minimize

the residual ~ε when subtracted from the vector of sampled data at each sample location, ~y.

This system can be expressed as:
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~y = X~β + ~ε (5.1)

The residual ~ε is assumed to be normally-distributed with variance σ2 and zero mean.

The OLS solution of this equation that minimizes the sum of the residual
∑

~ε is (5.2), the

pseudoinverse of X times the sampled data ~y.

~β′ = (XHX)−1XH~y (5.2)

where H is the Hermetian transpose, and ′ represents the estimation of a variable, two

notation conventions used through this chapter. This assumes that the Gram matrix, XHX,

is non-singular. In the previous chapter, special care was taken to select SAF that yielded a

non-singular Gram matrix.

It should be noted that OLS is only appropriate for a classical regression model, which as-

sumes that the elements of the residual ~ε are statistically independent [52], thus cov ε = σ2In,

where σ2 is the residual variance, In is the N × N identity matrix (where N is the length

of ~ε. This means that the residual is unrelated at two separate locations in space, even if

the separation of those locations is extremely small. This assumption is not necessarily true,

and spatial correlation of the residual as a function of separation must be investigated, and

if present, taken into account in the regression process.

5.1.1 Generalized Least Squares

When the correlation matrix C of the residual is known a priori, if non-diagonal elements

are non-zero, then the residual ε is no longer considered spatially-independent. Through

the use of a decomposition of the C matrix into a Cholesky matrix T and its transpose,
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C = TTH , (5.1) can be pre-multiplied on both sides by the inverse of T to transform the

equation to one in which the transformed residual term has statistically-independent entries

[52]. This residual independence yields a transformed equation (5.3) in which β′ can be

solved using OLS.

~β′ = ((T−1X)H(T−1X))−1(T−1X)H(T−1~y) (5.3)

Through manipulation and reverse substitution of the Cholesky decomposition [52], the

estimation of β′ (known as Generalized Least Squares (GLS) regression) is expressed in

terms of the correlation matrix C in (5.4).

~β′ = (XHC−1X)−1XHC−1~y (5.4)

This estimate of ~β′ once again requires C to be known a priori. In most applications,

however, both the complex weights ~β′ of the SLA and a model of the correlation of the

residual C′ (and associated model parameters) must be simultaneously estimated. This

simultaneous estimate can be performed using an iterative algorithm called Geostatistical

Regression [56] [52], outlined in Section 5.1.4. First, a method of modeling the spatial cross-

correlation of the residual must be established.

5.1.2 Covariograms and Spatial Dependence

A statistical analysis and covariance (and correlation) model of the residual data ~ε must

be performed for use in the iterative Geostatistical Regression process. A useful method

to model spatial dependencies is the variogram (and covariogram). In a covariogram C(h),

the covariance of two processes at two points in space (cov(ε(~x1), ε(~x2)) is a function of the
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separation of the two points in space alone (h = ||~x1−~x2||), independent of where the points

are [52].

A convenient way to calculate and express the manner in which two processes are expected

to di�er in space is to observe the expected squared di�erence of the residual E[ε((~x1) −

ε(~x2))
2] [52]. Through expansion and manipulation, the de�nition of the covariogram can be

utilized, and the expected squared residual di�erence becomes 2[C(0)−C(h)]. Normalizing

this by a factor of a half, the variogram can be de�ned as γ(h) = C(0)−C(h). Finally, using

C(0) = σ2, the relation between the variogram and covariogram becomes C(h) = σ2 − γ(h).

Residual data can be used to construct an empirical covariogram using the following

procedure [52].

1. For a set of residual data ~ε, calculate the squared di�erence of each and every pair of

residual data and the separation h between the points at which the residual is sampled.

2. Divide the span of calculated separations h into evenly-spaced bins from 0 to hmax.

3. Group the squared di�erence data into respective bins based on their corresponding

separation h

4. Calculate the mean squared di�erence for each bin (thus estimating the expected

squared di�erence for each h bin).

The resulting bin mean values versus bin h (normalized by one half) form the empirical

variogram. It should be noted that bin size and maximum separation hmax should be

chosen such that each bin contains at least 30 points [52]. This is a general rule of thumb,

and is applied to assure a su�cient number of points such that their average approaches the

expected value.
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The empirical covariogram can be analyzed to choose an appropriate covariogram model.

The empirical covariogram can then be �t to a candidate model using OLS, or each bin can

be weighted such that data from bins with more points have a greater weight than data from

bins with fewer points (a process knkown as weighted least squares).

Two issues arise from this procedure as it applies to channel modeling. First, the var-

iogram is de�ned only in terms of point separation h, which means that the variogram is

independent of direction of separation. This indicates that the underlying covariogram is

assumed to be isotropic. If the empirical variogram is calculated with bins in two dimensions

(thus in terms of separate x and y separation distances), the variogram can be inspected

for anisotropic behavior. This will likely exhibit as an ellipse with a major and minor axis

and a rotation. Correctional rotation and directional scaling can be applied to the empiri-

cal variogram data to create an equivalent isotropic model. Chapter 2 contains additional

information on isotropy in variograms.

Second, and perhaps most importantly, the variogram models discussed in [56] and [52] all

utilize real-valued data, producing a positive de�nite variogram. The residual of the channel

model being developed will be complex-valued. While the general concepts and procedure

remain as described, complex candidate models and empirical variogram methods must be

utilized to apply these methods to a complex channel model.

5.1.3 Complex Geostatistical Covariance Model

Both issues of complex covariance modeling and anisotropy have been addressed by De

Iaco and Posa [57]. The following is a summary of the method extracted from this paper for

use in the iterative Geostatistical Regression procedure in the following section.

For complex random �elds, the complex covariance is de�ned as:
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C(~h) = E[(Z(~x1)− µ)(Z(~x1 + ~h)− µ)] (5.5)

where Z(~x) = X(~x) + iY (~x) is the complex �eld at position ~x, µ is the mean of Z (which

is equal to zero in the context of our residual �eld), and ~h is the separation vector (which

it should be noted accounts for separation distance and direction). The covariance function

can be written in terms of two functions, one for the real part and one for the imaginary

part (5.6), the real part is the sum of the autocovariance of X and autocovariance of Y , and

the imaginary part is the di�erence of the cross-covariance of Y and X, and cross-covariance

of Y and X [57].

C(~h) = Cre(~h) + iCim(~h) = (CX(~h) + CY (~h)) + i(CY X(~h)− CXY (~h)) (5.6)

The imaginary part of this complex function is not a covariance function, which means

an alternate form for expressing a complex covariance must be determined. An admissible

covariance model is [57]:

C(~h;~c, ~θ) = cos(~h · ~c)C̃(~h; ~θ) + i sin(~h · ~c)C̃(~h; ~θ) (5.7)

where ~h is a separation vector, ~c is a translation vector that relates the real and imaginary

cross-covariances, and ~θ is a parameter vector for a selected real covariance function C̃. The

real covariance function will be selected after inspection of the empirical covariance and

variogram.

With preliminary variables and equations established, the following procedure from [57]

was followed:
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1. Calculate auto-covariance and cross-covariance for the real and imaginary parts of each

and every pair of residual signal ~ε′, and calculate the separation vector ~h for each pair.

2. Divide the 2-dimensional separation vector space into separation vector bins, and cal-

culate the mean CX(~hi), CY (~hi), CY X(~hi), and CXY (~hi) for each bin. Calculate C
re(~hi)

and Cim(~hi) for each bin ~hi. Observe the behavior of Cre and Cim versus ~hi to select

a C̃(~hi; ~θ) which follows the trends of the observed functions.

3. In both [57] and for this procedure, a Gaussian covariance model was selected for

C̃(~h; ~θ). The form of this model is in (5.8). The parameter vector ~θ consists of the

parameters σ2 = C(0), the angle corresponding to maximum range θ, maximum range

aθ, and minimum range aφ (range in perpendicular direction to maximum range). In

other words, ~θ = (σ2, θ, aθ, aφ). With the exception of σ2, the elements of ~θ de�ne

the anisotropy present in the observed covariance and compensate for it. Note that

~h = (h1, h2), the x and y separation components, in (5.8) and subsequent equations.

C̃(~h; (θ, aθ, aφ)) = e
−
[(

cos(θ)h1−sin(θ)h2
aφ

)2

+

(
sin(θ)h1+cos(θ)h2

aθ

)2
]

(5.8)

This equation, in conjunction with (5.7), produces the complex covariance model

in (5.9).

C(~h;~c, ~θ) = σ2
[
cos(~h · ~c)C̃(~h; (θ, aθ, aφ)) + i sin(~h · ~c)C̃(~h; (θ, aθ, aφ))

]
(5.9)

4. Let Nl equal the number of bins ~hi. The translation vector ~c can be estimated through

OLS using Cre(~hi) and C
im(~hi) in conjunction with (5.7). The resulting equation for
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estimating ~c′ is (5.10).

~c′ =


∑Nl
i=1 h

2
1,i

∑Nl
i=1 h1,ih2,i∑Nl

i=1 h1,ih2,i
∑Nl
i=1 h

2
2,i


−1 

∑Nl
i=1 arctan(C

im(~hi)

Cre(~hi)
)h1,i∑Nl

i=1 arctan(C
im(~hi)

Cre(~hi)
)h2,i

 (5.10)

5. Use an optimization routine (non-linear least squares or other) to �nd the parameter

vector ~θ that minimizes the sum

~θ′ = arg min
~θ

Nl∑
i=1

[(Cre(~hi)− σ2 cos(~hi · ~c′)C̃(~hi; ~θ))
2 + (Cim(~hi)− σ2 sin(~hi · ~c′)C̃(~hi; ~θ))

2]

(5.11)

6. Using ~θ′ and ~c′ in conjunction with (5.9), we now have a complex covariance model

C(~h;~c′, ~θ′).

With this complex covariance model, a full covariance matrix V can be calculated. If

Nl measurement locations (corresponding to the number of elements in the sample vector

y), then V is an Nl × Nl matrix, with element Vi,j = C(~xi − ~xj) = C(hi,j;~c
′, ~θ′). The

full covariance matrix V is related to the correlation matrix C by a factor of the variance

(V = σ2C) [52]. Because of this relationship, the GLS estimation of ~β′ (5.4) can be rewritten

in terms of the full covariance matrix instead of the correlation matrix (5.12).

~β′ = (XHV−1X)−1XHV−1~y (5.12)

This GLS equation utilizing a full covariance matrix determined from the complex co-

variance model produces a better estimate of ~β′. This better estimate of ~β′ in turn is applied

to (5.1), which then yields a new residual vector. The new residual vector can be used to

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 121



CHAPTER 5. STATISTICAL AND FREQUENCY EXTENSIONS OF NEAR-FIELD
CHANNEL MODEL

revise the covariance model, and so forth. This directly leads to an iterative re�nement of

estimated parameters ~β′, ~c′, and ~θ′, which is presented in the following section.

5.1.4 Geostatistical Regression

Previous work shows a method for iteratively estimating ~β′ and spherical variogram

parameters ~θ′ for real-valued random processes [52]. This procedure is adapted here (with

general progression of the algorithm closely following the source) for a complex Gaussian

covariogram as developed in the previous section, to iteratively estimate ~β′, covariogram

parameters ~θ′, and translation vector ~c′ for a complex random process.

1. Use the procedure from the previous chapter to determine a set of plane wave and

point source spatial attribute functions (SAF), and evaluate these functions at all

measurement locations at which the measurement y was taken, thus forming a spatial

attribute matrix X. As before, the rows of X correspond to each sample location, and

each column in X corresponds to a spatial attribute function. An extra row consisting

of a unit-magnitude constant (identical for all rows) is added to force the resultant

residual to be zero-mean.

2. For the system ~y = X~β + ~ε (where ~beta are the complex coe�cients of each SAF, and

~ε is the model residual), perform an initial OLS estimate of ~β′ (5.13).

~β′0 = (XHX)−1XH~y (5.13)

Calculate the corresponding residuals (5.14).

~ε′0 = ~y −X~β′0 (5.14)
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3. Use the residuals ~ε′0 in conjunction with the procedure in Section 5.1.3 to estimate the

empirical complex covariance parameters Cre(~hi) and C
im(~hi) for the separation vector

space divided into bins ~hi.

4. Continue to use the procedure in Section 5.1.3 to �t the empirical complex covariance

data to the complex Gaussian covariance model. The estimated parameters to �t the

model to the data are the translation vector ~c′0, and the parameter vector vecθ′0 =

(σ2′
0 , θ

′
0, a
′
θ0
, a′φ0). The resulting model is C ′0(

~h;~c′0,
~θ′0).

5. Fill in the initial estimate of the full covariance matrix (5.15), where each row i, column

j pair represents a pair of points xi and xj, with separation vector hi,j = xj−xi. Index

i correspond to the row number of spatial attribute matrix X, which corresponds to

the spatial attribute functions evaluated at point xi.

V′0 = V′(~c′0,
~θ′0)


C ′0(

~h1,1;~c
′
0,
~θ′0) · · · C ′0(

~h1,n;~c′0,
~θ′0)

...
. . .

...

C ′0(
~hn,1;~c

′
0,
~θ′0) · · · C ′0(

~hn,n;~c′0,
~θ′0)



=


σ2
0 · · · C ′0(

~h1,n;~c′0,
~θ′0)

...
. . .

...

C ′0(
~hn,1;~c

′
0,
~θ′0) · · · σ2

0

 (5.15)

6. Utilize GLS in conjunction with V′0 as in (5.12) to estimate a new value of ~β′1 (5.16).

~β′1 = (XHV′−10 X)−1XHV′−10 ~y (5.16)
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Calculate new residuals using the new value of β (5.17).

~ε′1 = ~y −X~β′1 (5.17)

7. Perform Steps 3 and 4 with ~ε′1 instead of ~ε′0 to determine the translation vector ~c′1, and

the parameter vector ~θ′1 = (σ2′
1 , θ

′
1, a
′
θ1
, a′φ1).

8. Let k equal the current iteration number (if immediately following step 7, k = 1), and

k − 1 is the previous iteration number (if immediately following step 7, k − 1 = 0).

For each current and previous estimated parameter ((~β′k,~c
′
k, σ

2′
k , θ

′
k, a
′
θk
, a′φk),

(~β′k−1,~c
′
k−1, σ

2′
k−1, θ

′
k−1, a

′
θk−1

, a′φk−1
)), calculate the magnitude fractional change of each

parameter p′ (where p′ is any parameter from the list of parameters) from the previous

iteration (k − 1) to the current iteration (k).

∆kp′
=

∣∣∣∣∣p′k − p′k−1p′k−1

∣∣∣∣∣ (5.18)

If the parameter p′ is a vector with n parameters (as with ~β′ and ~c′), then let ∆k~p′
be

the maximum fractional change between iterations of any element of the vector (5.19).

∆k~p′
= max

[∣∣∣∣∣p
′
j,k − p′j,k−1
p′j,k−1

∣∣∣∣∣ : j = 0, 1, . . . , n

]
(5.19)

Finally, the maximum fractional change between iterations is (5.20).

∆k = max
[
∆k~β′

,∆k~c′
,∆kσ2′

,∆kθ′
,∆ka′

φ

,∆ka′
θ

]
(5.20)
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9. De�ne a maximum fractional change threshold ∆̄ (for which the maximum fractional

change calculated in the previous step must be under to terminate the algorithm). If the

maximum fractional change is below or equal to this threshold (∆k ≤ ∆̄) for the current

iteration k, then terminate the algorithm and the �nal estimated model parameters

are (~β′,~c′, σ2′, θ′, a′θ, a
′
φ) = (~β′k,~c

′
k, σ

2′
k , θ

′
k, a
′
θk
, a′φk). If the maximum fractional change

is above this threshold (∆k ≤ ∆̄), increment k by one and repeat Steps 5 through 8

until the maximum fractional change is below or equal to this threshold (∆k ≤ ∆̄) for

the current iteration k, and extract the �nal estimated model parameters. In simple

terms, the iterative algorithm will terminate when each and every parameter converges

and changes by a su�ciently small amount between iterations.

5.1.5 Geostatistical Kriging

In the previous section, we iteratively estimated the Spatial Attribute Function (SAF)

complex weights (~β′), translation vector (~c′), and residual statistical model parameter vector

(~θ′) from a series of channel measurements. With these channel model parameters in con-

junction with the sampled channel measurements, we can implement a method of estimating

the channel at any location in the sampled test area using a method known as Geostatistical

Kriging [52]. In Geostatistical Kriging, for a location for which the channel is unknown and

estimation is desired (x0), the SAF can be evaluated at x0 forming ~X0 (with capital X rep-

resenting the Spatial Attribute Matrix and lowercase x representing a position in space) and

weighted by the estimated coe�cient vector ~β′ determined in the previous section. Then,

using the residual of nearby measurement locations in conjunction with the residual spatial

covariance model, the residual at the unobserved point (ε′0) can be estimated. The following

procedure, once again closely following that of [52], details this procedure.
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1. Determine a prediction set for the unobserved point x0. Only measurements spatially

close to x0 are signi�cantly correlated with the residual at x0. De�ne a threshold h0

beyond which measurement residuals will be excluded. This can be determined through

inspection of the complex covariance function determined in the previous section. For

all measurement locations xi in the measurement set {xn}, �nd a set {x} which only

includes measurements within a distance of h0 of the unobserved point x0 (5.21).

{x}(x0) = {xi ∈ {xn} : ||x0 − xi|| < h0} (5.21)

2. Using the prediction set, create an estimate of the prediction covariance matrix for

the unobserved point x0 united with the prediction set {x} (5.22). Let row/column

one correspond to the unobserved point (and correspond to an index of 0), and all

other rows and columns correspond to points in the prediction set (and correspond to

an index of 1 through i). Populate a matrix V′ where V ′i,j = C( ~hi,j;~c
′, ~θ′). Let ~v′ be

de�ned as a row vector where element j is de�ned by vj = C( ~h0,j;~c
′, ~θ′), the covariance

between point xj in the prediction set and the unobserved point x0.

V′prime =

σ2′ ~v′H0

~v′0 V′

 (5.22)

3. Estimate the residual ε′0 at the unobserved point x0 through simple Kriging of the

residuals of the prediction set ~ε′ (5.23).

ε′0 = ~v′H0 V′−1ε′ (5.23)
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4. Use the spatial attribute matrix at the unobserved point ~X0, complex spatial attribute

weights ~β′, and estimated residual at the unobserved point ε′0 to estimate the channel

at the unobserved point y′0 (5.24).

y′0 = ~X0
~β′ + ε′0 (5.24)

5. Finally, this analysis can produce a prediction standard error (5.25).

σ′0 =
√

(σ2′ − ~v′H0 V′−1~v′0) + (X0 −XHV′−1~v′0)
H(XHV′−1X)−1(X0 −XHV′−1~v′0)

(5.25)

The process of choosing and �tting Spatial Attribute Functions to measured channel

data, then iteratively re�ning the complex coe�cients of these functions in conjunction with

developing and iteratively re�ning a complex covariance model of the residual, results in a

model that can be used in conjunction with channel measurements and the process of Kriging

to mathematically model the channel at any location in the sampled observation zone. One

limitation of this model is that analysis and modeling is performed at a single frequency.

To be useful in a wideband system, this model must be extended to be applicable to a wide

frequency band.
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5.2 Adapting Spatial Attribute Function Set for a Wide-

band Model

In the previous chapter, plane wave (EPW (r̃) = e−j
~k·~r) and point source (EPS(~r) =

e−jk||~r−~r0||

4π||~r−~r0|| ) Spatial Attribute Functions (SAF) were selected for use in our channel model.

Both types of function are complex exponentials, containing in the exponential a coe�cient

to the independent variable(s). In the case of plane waves, the dependent variable is a

position vector ~r, while in the case of point sources, the dependent variable is radial distance

r = ||~r−~r0||. In the exponential, the coe�cient to these dependent variable(s) is wavenumber

k = 2πf
c
for point sources, or wavevector ~k = 2πf

c
k̂, where f is frequency in Hz, c is the velocity

of propagation (speed of light in free space), and k̂ is the unit wavevector.

For our narrowband model, which is based on free-space sampling of the channel at a

speci�c frequency f0 given a unit excitation of the system at the same frequency, the f term

in the wavenumber or wavevector expression should be equal to f0. This should be true even

in re�ections of the waveforms from surfaces in the system. However, it should be noted that

the 3D plane wave projections onto the X-Y plane that form the 2D plane wave SAF in our

model will only contain the x̂ and ŷ components of k̂. We would expect in 3D space, the

wavevector would have the form ~k = 2πf
c

(kxx̂+ kyŷ+ kz ẑ), where kx, ky, and kz are the x, y,

and z components of the unit vector k̂, with
√
k2x + k2y + k2z = 1. This would mean the unit

vector of the projection would be k̂proj = kx√
k2x+k

2
y

x̂+ ky√
k2x+k

2
y

ŷ, and the wavevector coe�cient

would become
2π
√
k2x+k

2
yf

c
. Therefore the apparent frequency of the 2D plane wave would be√

k2x + k2yf , and thus each 2D projected plane wave should contain a constant-scaled version

of the excitation frequency f0. In short, in each SAF, we have a complex exponential with
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f0 or a constant-scaled version of f0 in the exponent.

Channel measurements can be performed at a series of narrowly-spaced frequencies to

observe the change in channel versus frequency. In the case of a closed, static, linear system

consisting of materials that have a small change in properties relative to change in frequency,

channel measurements at closely-spaced frequencies will also have a small change in magni-

tude. This is due to the fact that the geometric paths between transmitter and receiver will

remain static independent of frequency, with variation only occuring in the re�ection coe�-

cients as a function of frequency in re�ecting materials in the system. These variations are

small in the system of interest, as the absorbing material properties are relatively constant

in the frequency range of analysis.

Because channel signal paths are essentially constant with small frequency changes, it

is logical that the resultant channel with a small frequency change is a frequency-shifted

version of the underlying components (which are described by SAF), each with coe�cients

that change slightly as a function of frequency. Because the wavenumer or wavevector is

proportional to the frequency of excitation and measurement (k ∝ f0), then at a shifted

frequency af0, where a is a shifting constant of proportionality (with a = 1 representing no

shift), a wavenumber or wavevector can also be scaled by a.

Using the idea of frequency-shifted SAF as discussed above, a logical extension is to

determine the SAF at a single frequency f0 using the method described in the previous

chapter, then for a shifted frequency f1 = af0, re-calculate the spatial attribute functions at

each and every measurement point with the exponent scaled by a, then re-estimate all SAF

weights and other estimated parameters. The following section outlines this procedure in

detail.
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5.2.1 Algorithm for Fitting Spatial Attribute Function Set

The following is a procedure for using the SAF extracted from a single frequency to

estimate model parameters over a wide frequency range.

1. Select an initial frequency f0 corresponding to a frequency used to sample the channel

over an observation region.

2. Utilize the procedure from the previous chapter to extract a set of plane wave and

point source SAF for the frequency f0.

3. Use the procedure from the previous sections to iteratively estimate (~β′,~c′, σ2′, θ′, a′θ, a
′
φ)

at f0.

4. Select a set of frequencies {fn} near f0 for which the channel was sampled over the

same observation region.

5. For each fn, determine the scaling constant an = fn
f0
. Utilize an to scale the dependent

term of the exponent of each SAF, and evaluate the SAF at each and every sample

location in the observation region. Populate the spatial attribute matrix Xn for fn,

using the scaled SAF evaluations, where each row of X represents a measurement

location, and each column represents a SAF.

6. Utilize the procedure from the previous sections to iteratively estimate (~β′,~c′, σ2′, θ′, a′θ, a
′
φ)

at each and every fn in {fn}.

7. The end result is a set of each estimated parameter for a set of frequencies and for a

single set of SAF.
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This procedure yields each parameter at a corresponding set of frequencies. These pa-

rameters can be used to estimate the channel at each measurement point at each frequency,

which can then be compared to the measured channel being modeled. The error vector

magnitude (EVM) can be calculated at each sample point in the observation region, and a

mean EVM can be determined for the model at each frequency. An EVM threshold can be

established, and all frequencies with a mean EVM violating this threshold can be excluded

from the model at the selected f0 (and can be included in a model at a separate frequency

and corresponding set of SAF).

Finally, The set of frequencies for which the model produces an acceptable EVM can be

included in the following step, outlined in the next section.

5.2.2 Modeling Coe�cients as Polynomial Functions of Frequency

Regression can be used to �t a polynomial to the parameter estimates. The previous

section produced an estimate of each model parameter at each selected measurement fre-

quency. Note that each parameter vector consists of multiple model parameters, each of

which should be analyzed separately versus frequency. Additionally, many model parame-

ters are complex-valued, which will not work with a polynomial �t. These should be modeled

as two parameters each, one for magnitude, and one for phase angle. Magnitude and angle

are each real values, and therefore can be modeled as a polynomial. For each parameter

to be modeled, we �t a polynomial as a function of frequency using the set of estimated

parameters and measurement frequencies.

Each parameter component estimation from the measurement is plotted versus mea-

surement frequency. A polynomial order is selected to ensure the polynomial follows all

signi�cant trends in the component estimation versus frequency.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 131



CHAPTER 5. STATISTICAL AND FREQUENCY EXTENSIONS OF NEAR-FIELD
CHANNEL MODEL

The complete list of parameters to be modeled using this polynomial method is ~βmag(f)

= (β0mag(f), β1mag(f), · · · , βnmag(f)), ~βangle(f) = (β0angle(f), β1angle(f), · · · , βnangle(f)), ~c(f)

= (c1(f), c2(f)), ~θ(f) = (σ2(f), aφ(f), aθ(f), θ(f)).

5.2.3 Final Wideband Model Description

The �nal wideband model using the parameters as a function of frequency is an extension

of (5.24) and (5.23), with V and ~v0 expressed as functions of parameters utilized in their

population. The channel estimate H ′ between the transmitter and a receiver at location ~x0

at frequency fn is de�ned in the following equation (5.26),

H ′(~x0, fn) = ~X(~x0, fn)~βmag(fn)ej
~βangle(fn) + ~v′0(~x0,~c(fn), ~θ(fn))HV′(~x0,~c(fn), ~θ(fn))−1ε′

(5.26)

where ~X(~x0, fn) is the spatial attribute vector, with each spatial attribute function evalu-

ated at position ~x0 and frequency fn, ~βmag(fn)ej
~βangle(fn) is the vector of complex SAF co-

e�cients ~β evaluated at frequency fn, ~v
′
0(~x0,~c(fn), ~θ(fn)) is a vector of modeled covariances

between admissible measurement points ~xi and location ~x0 with elements de�ned by C(~xi−

~x0;~c(fn), ~θ(fn)), V′(~x0,~c(fn), ~θ(fn)) is a matrix of modeled covariances between each pair of

admissible measurement points ~xi and ~xj with elements de�ned by C(~xj − ~xi;~c(fn), ~θ(fn)),

and ~ε is a vector of residuals at admissible measurement points ~xi at frequency fn.

This modeling procedure is performed for as many subsections of the frequency range

to be modeled as required to ensure that each modeled section is below a de�ned EVM

threshold. Let the number of bands be de�ned as NB. It also is performed for each individual

transmit antenna of NA transmit antennas. This method therefore requires NA×NB separate
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models to de�ne the channel for a wideband MIMO system ofNA transmitters by an arbitrary

number of receivers in the observation zone, over NB frequency bands. The remainder

of this chapter is an experimental validation of this statistical wideband channel model

using an extensive measurement campaign. The following chamber is an extension of this

measurement-based model to MIMO system analysis.

5.3 System Description

The octoBox BOX-38 (Fig. 5.2) by Octoscope, Inc. is a semi-anechoic chamber for over

the air (OTA) testing presents a system where the channel is quasi-near�eld due to close

proximity of probe antennas (along upper-right side in the �gure) and test zone in the center

of the box. A line of sight (LOS) channel in free-space comparable to the channel between a

log periodic probe antenna and a dipole located in the BOX-38 test zone region in the center

of the chamber was simulated and modeled in the previous chapter with accurate results.

It is therefore logical to utilize similar measurements from this chamber for performing and

validating the channel model extension presented in this chapter.

5.3.1 Chamber Con�guration and Properties

The octoBox BOX-38 is a small semi-anechoic chamber. The box acts as a Faraday cage,

and its channel between probe antennas and DUT is shielded from signals exterior to the

box. Isolation is rated at >80 dB when using cable connection �lters. The box interior

is lined with an absorbing material that attenuates re�ections by approximately 20 dB for

frequencies between 700 MHz and 6 GHz. Some elements including the metallic outlet cover

on the back interior wall (not covered by absorbing foam) may produce �rst-order re�ection

components to the channel, but in general a dominant line of sight (LOS) signal path is

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 133



CHAPTER 5. STATISTICAL AND FREQUENCY EXTENSIONS OF NEAR-FIELD
CHANNEL MODEL

Figure 5.2: Octoscope octoBox BOX-38 Interior

expected.

A plastic frame in the interior allows for the placement of multiple probe antennas,

typically either dipole or log periodic. These antennas are connected to SMA bulkheads un-

derneath the absorbing foam, allowing for antenna excitation or connection to a transceiver.

A power strip in the rear of the chamber allows �ltered mains power to be supplied to a

device under test (DUT) and/or a plastic turn table in the test zone of the chamber, allowing

for rotation of the DUT orientation about the bottom center of the chamber. Finally, two �l-

tered Ethernet ports are positioned along the rear of the chamber to allow for communication

with the DUT and/or turntable control.

The interior dimensions of the chamber (in the open region excluding the absorbing foam

within the chamber) are 0.49 m high, 0.81 m wide, and 0.55 m deep.
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5.3.2 Antenna Properties

A set of four custom-designed Octoscope OBS-14 (Fig. 5.3) broadband high-gain log-

periodic antennas are utilized as probe antennas in the small chamber. These are mounted

on the plastic frame along the upper-right edge of the chamber in an array similar to Fig.

5.4. Each element is attached to a gimbal allowing for orientation and boresight adjustment.

Each log-periodic antenna is 14-element, and matches the antenna parameters utilized in

the log-periodic antenna modeled in the previous chapter. The frequency range of operation

for these antennas is 2 GHz to 6 GHz. Antenna is constructed as a microstrip antenna with

dimensions 0.127 m by 0.02 m. Fig. 5.5 shows the gain pattern of the OBS-14 antenna at 3

GHz and 6 GHz. The speci�ed impedance of the OBS-14 antenna is 50 Ω [4].

Figure 5.3: Octoscope OBS-14 Log Periodic Antenna [4]
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Figure 5.4: Octoscope OBS-14 Array [4]

Figure 5.5: Octoscope OBS-14 Radiation Patterns [4]

The receiver dipole antenna is a Pasternack PE51083 rubber duck dual band antenna

(Fig. 5.6). This antenna has frequency ranges from 2.4 GHz to 2.5 GHz, and 4.9 GHz to

5.825 GHz. It has a length of 0.108 m, a nominal 2 dBi omnidirectional gain and an input

impedance of 50 Ω [5]. Further inspection of the antenna revealed a half-wave sleeve dipole
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construction.

Figure 5.6: Pasternack PE51083 Rubber Duck Antenna [5]

5.3.3 Measurement Equipment

Channel measurements were taken with a Keisight E5063A-2H5 ENA Vector Network

Analyzer (VNA) with ECal automatic calibration set (Fig. 5.7). Each port has an input

impedance of 50 Ω. This VNA allows for 2-port S-parameter measurements over frequencies

from 100 kHz to 18 GHz [6]. Each sweep can be used to sample up to 10001 points.
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Figure 5.7: Keysight E5063A VNA [6]

5.4 Measurement Campaign Description

A measurement campaign was designed to spatially sample the channel from each of

four stationary Log-Periodic probe antennas located along the top right edge of the chamber

interior, with a single sleeve dipole moved along a grid to spatially sample the channel.

Broadband 2 port S-parameters were captured with the VNA over the entire 5 GHz U-NII-

1 through U-NII-2C frequency bands (a frequency range of 5.15 GHz to 5.725 GHz, the most

widely-used frequencies used in 5 GHz WiFi). 1151 frequencies in this range were sampled,

resulting in a frequency domain spacing of 500 kHz. Calibration of the VNA was performed

using a Keysight E-cal set, and was calibrated to the ends of the SMA cables which connect

directly to the SMA bulkheads on the side of the anechoic chamber. All unused anechoic

chamber ports were terminated with 50Ω calibration standards, thus terminating all unused

antennas with an impedance matching the speci�ed antenna input impedance. Therefore,
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the channel being measured is from the chamber probe SMA input to the chamber DUT

SMA output. The channel measured includes the properties of the transmit and receive

antennas and their interaction with each other through the environment.

As mentioned in previous sections, because the proximity between transmit and receive

antennas is near the far-�eld threshold, interactions between the antennas cannot easily be

de�ned in terms of far-�eld radiation patterns, isolated, and extracted from the measured

channel data. As a result, the channel measurements and channel model will include the

antennas as part of the model, indicating that this model generated from these measurements

will be speci�c to this combination of antennas and this setup.

While the value of such a limited, speci�c model may at �rst appear to be low, a model

speci�c to this con�guration is still a valuable model in the context of a small chamber, where

the probe antenna locations in the small chamber are �xed to a small number of possible

con�gurations, receiver antennas are often dipoles, and the receiver antenna locations will

be �xed to within a de�ned measurement zone. As a result, this channel model will provide

relevant information about the expected channel and associated capacity and spatial corre-

lation in the measurement region. This information is extremely important in validating the

use of a small chamber as a repeatable testing environment.

Channel measurements can be directly derived from S-parameter measurements using

the relation H = S21

2
, which assumes a match between source, characteristic, and load

impedances in the system. Assuming the VNA has a source of VS with 50Ω impedance at

port 1, and a load impedance of 50Ω at port 2, and the input impedance of the transmit and

receive antennas are also speci�ed as 50Ω, then the input voltage into the system is a voltage

divider between the source impedance (50Ω) and the input impedance to the system (also

50Ω), and Vin = VS
2
. Since Vout = Vload and S21 = Vout

Vin
, therefore S21 = 2Vout

VS
. Rearranging
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this equation, the channel is determined to be H = Vout
VS

= S21

2
. Thus the channel transfer

function H is taken as one-half the measured S21 for the purpose of analysis.

With the de�nition of the parameters to be measured, the reasoning for this speci�c

measurement campaign established, and the elements making up the system speci�ed in the

previous section, the physical setup of the system elements must be established, as well as a

description of measurement campaign positions.

5.4.1 Antenna Orientations and Positions

Let a coordinate system de�ning locations within the chamber be established with origin

in the bottom left back interior corner of the chamber, positive X axis along the bottom

back edge of the chamber, negative y axis along the bottom left edge of the chamber, and

positive Z axis along the back left side edge of the chamber. Coordinates are in meters,

with maximum X and Z and minimum Y values de�ned by the dimensions of the chamber

interior, and minimum X and Z and maximum Y values all de�ned as equal to zero. This

coordinate system will be used to de�ne antenna locations within the chamber.

Each of the four Log-Periodic probe antennas (as speci�ed in the previous section)

were attached using gimbals to the plastic support structure along the upper right edge

of the chamber interior. Each of the four probes are indexed as 1 through 4, with probe

center coordinates P1 = (0.7355,−0.4590, 0.3026) (near upper front right corner), P2 =

(0.7644,−0.3374, 0.2935), P3 = (0.7373,−0.1837, 0.2913), and P4 = (0.7538,−0.0680, 0.3009)

(near upper back right corner). Each probe antenna had its boresight aimed toward the bot-

tom center of the chamber. Each probe antenna was oriented along a plane perpendicular

to the bottom of the chamber that intersects both the chamber bottom center point and

the probe antenna center point. All four probe antennas were connected to SMA bulkhead
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connectors to the exterior of the chamber via short SMA cables tucked behind the foam

absorber along the chamber wall. Fig. 5.8 shows a diagram of the chamber, including probe

antenna positions in the chamber.

...

...

......

...

...

49 X positions

0.0158 m

0.0158 m

DUT Antenna

Test Zone

...

P1

P2

P3

P4

0.22m

Grid
Pitch

front

back

Figure 5.8: Chamber and Measurement System Diagram

A single sleeve dipole (as speci�ed in the previous section) was used as a receiver. The

dipole was kept in a Z orientation (and thus perpendicular to the chamber �oor). The dipole

center was located at Z = 0.153, which was kept constant by a plastic support structure

holding the antenna in place. This plastic structure also allowed for precise positioning

of the antenna along an X-Y grid on the chamber �oor, allowing for spatial sampling of
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the channel. The dipole DUT antenna is shown in Fig. 5.8, along with the directions of

movement represented by arrows in the X and Y directions. The SMA cable connecting the

dipole to the SMA bulkhead to the chamber exterior was tucked behind the foam absorbing

material to minimize the length of cable exposed in the chamber.

5.4.2 Chosen Measurement Campaign Positions

The entire chamber interior bottom surface was measured in a grid with lines perpendic-

ular to the X and Y axes with a pitch of 0.0158 m. This choice of this pitch is explained

after the description of the measurement campaign. Fig. 5.8 illustrates the grid layout on

the bottom of the chamber, along with the pitch of the grid.

For the measurement campaign, the VNA was calibrated using the E-cal for the desired

frequency range, the two SMA cables from the VNA were attached to the port corresponding

to the probe index and the receiver dipole. All other SMA ports were terminated with 50Ω

calibration standards. The measurement campaign consisted of:

1. Placing the dipole antenna at the �rst/next intersection point on the grid.

2. Adjusting the SMA cable to minimize the length exposed beyond the absorbing mate-

rial.

3. Closing the chamber door securely.

4. Initiating the VNA to take a measurement over the frequency range speci�ed previously.

5. Saving the S parameter data in a �le with the probe index and measurement point x

and y index.
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This procedure was repeated for each measurement position on the chamber �oor grid, and

that entire process was repeated for each of the four probe antennas acting as transmitter. A

total of 49X positions by 28 Y positions by 4 probes, or 5488 measurements were taken (each

containing 2-port S parameters for 1151 frequencies). (Further measurements were taken at

10,001 frequencies between 1 GHz and 6 GHz (with identical spacing), as well as at 6 probe

locations for a total of 8232 broadband measurements, but the scope of this investigation

was reduced to 4 transmitters in the 5 GHz WiFi frequency range. The additional data set

is for an extension of this work to other probe con�gurations and the 2.4 GHz WiFi band in

future work.)

Measurement spacing was chosen to be less than that corresponding to the spatial Nyquist

frequency of the highest frequency content in the system. (Sample spacing in space is com-

parable to sample period in time; the spatial sample frequency is inversely proportional to

the spatial sample spacing just as frequency is inversely proportional to the sample period

in time. Just as temporal signals must be sampled with a spacing less than that correspond-

ing to the Nyquist sampling frequency, a spatially-sampled signal must be sampled with a

spacing less than that corresponding to the spatial Nyquist sampling frequency.) With the

highest frequency content in the system originally being considered as 6 GHz, the spatial

sampling spacing must be less than half the corresponding wavelength of 0.050 m, i.e. less

than 0.025 m. A grid spacing of 5/8 in., or approximately 0.0158 m, su�ciently met this

requirement with su�cient headroom, and therefore was used.

Despite taking measurements over the entire chamber �oor, the scope of analysis was

narrowed to a feasible test zone near the center of the chamber. A range about the center of

the chamber, about 22 cm by 19 cm, was chosen for performing the modeling and analysis.

This is illustrated in Fig. 5.8 as a red box around the chamber center �oor. For the remainder
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of the analysis, this will be known as the test zone. This size will su�ciently contain most

small- to mid-sized device under test (DUT) that would be well-suited to a small chamber

test environment. X values therefore fall in the range 0.2856 to 0.5062, while Y values

fall in the range -0.3247 to -0.1357. The method provided can be used in conjunction with

measurements over a larger region to generate a model for a large test zone and DUT.

5.4.3 Resulting Dataset

Using the results of the measurement campaign, we extracted a sampled channel over

the test zone for each of the four probes and 1151 frequencies at 195 measurement points.

Presenting this entire data set of 4604 narrowband channels is not practical or useful in the

scope of this document, but a representative sampled channel magnitude (Fig. 5.9) and

phase plot (Fig. 5.10) for a single frequency (5.15 GHz) and probe (probe one) is presented

here.

The magnitude plot (Fig. 5.9) shows the channel has a channel magnitude varying be-

tween -46 dB and -36 dB over the test zone. The actual sample points are at the intersection

points of the grid, while the surrounding color between sample points is an interpolation of

the magnitude. As Probe 1 is closest to the bottom-right corner of the plot, points in the

lower-right corner of the plot are closest to the probe while points in the upper-left corner

of the plot are farthest.

As expected, points generally farther from the probe have a lower channel magnitude

while points closer to the probe have a generally higher channel magnitude. The bands of

peaks and troughs in the magnitude over the test zone indicate the presence of construc-

tive and destructive interference, likely caused by at least one additive re�ection present

within the chamber. These trends are present for other frequencies in the channel measured
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Figure 5.9: Measured Channel Magnitude (dB), Probe One (Located in Lower Right), 5.15
GHz

from probe one. The channel for probes two, three and four all exhibit similar magnitude

trends proportional to distance from each probe, but have less pronounced constructive and

destructive interference.

The phase plot (Fig.5.10) exhibits primarily concentric Eikonal surfaces with the center

located near probe one. This is expected as the line of sight (LOS) component of the

channel is dominant, and the LOS component is directly from probe one. Due to the spatial

sampling resolution and the linear interpolation of plotted phase between points, the Eikonal

surfaces plotted between sample points do not accurately illustrate the curved nature of the

surfaces. Also, the interpolation does not properly account for phase wrapping by increasing

or decreasing to the point of discontinuity and wrapping around. (For example, if one

sampled point of phase is −π
2

and the following is π
2
, and the actual phase process between
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Figure 5.10: Measured Channel Phase (rad.), Probe One (Located in Lower Right), 5.15
GHz

the two points is a line between −π
2
, and −π, then a discontinuity to π, and a line from π to

pi
2
, the interpolation line would be directly from −pi

2
and pi

2
with no wrapped phase. Thus

discontinuities between sample points are not captured in a plot consisting of �lling between

points with interpolation. Di�erent phase di�erences between consecutive points bordering a

discontinuity will exhibit di�erent interpolation slopes, and the interpolation region between

points covering a series of discontinuities may appear uneven, as is the case in Fig.5.10).

These issues in interpolation cause the Eikonal surfaces to appear jagged in the plot.

To reiterate, this jagged nature of the phase plot is only a side e�ect of the method of

displaying data. This inaccuracy in presentation should not be confused with introducing

an inaccuracy to the collected data that will be present in our model, which rely on curve

�tting and spectral analysis and not linear interpolation. The general trends of this plot, i.e.
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curved concentric Eikonal surfaces centered around the probe for which the measurement

was taken, are present in all phase plots from all probes at all frequencies.

5.5 Modeling of Measurement Data

With the channel sampled in frequency and space, the �rst part of the modeling process

is to determine the minimum number of each type of SAF (point sources and plane waves)

required to achieve a desired level of accuracy (i.e. su�ciently-low EVM across the test

zone). In our analysis, a general observed trend was that more SAF were required for a

given level of EVM at higher frequencies than low frequencies, so selecting the number of

SAF through analysis at the highest frequency of the relevant measurement campaign (5.725

GHz) will provide a su�cient number of SAF for all other frequencies in the measurement

campaign.

An investigation into the LN mean and LN SD of the EVM over the test zone was

conducted for all possible combinations of 0 to 6 point sources and 0 to 20 plane waves for

each of the four probes at 5.725 GHz using the procedure from the previous chapter. As in

the analysis presented in the previous chapter, a value of LN mean + 1 SD EVM over the

test zone was computed, and presented for each probe and combination of SAF. All possible

combinations of SAF for a probe are presented in each plot (Fig. 5.11 - Fig. 5.14). A

threshold of -15 dB for LN mean + 1 SD EVM was established, and all SAF combinations

with worse EVM performance were truncated from the plots for easy analysis.

Analysis of these plots show that probes two and three (Fig. 5.12 and Fig. 5.12) require

far more SAF components than probes two and four to achieve a LN mean + 1 SD EVM of

-15 dB. The combination of SAF with a LN mean + 1 SD less than -15 dB for all four probes

with the fewest number of components is three point sources (spherical components) and 19
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Figure 5.11: LN Mean + σ EVM, Probe One, 5.725 GHz
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Figure 5.12: LN Mean + σ EVM, Probe Two, 5.725 GHz

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 148



CHAPTER 5. STATISTICAL AND FREQUENCY EXTENSIONS OF NEAR-FIELD
CHANNEL MODEL

0 1 2 3 4 5 6

num. spherical components

0

2

4

6

8

10

12

14

16

18

20

nu
m

. p
la

na
r 

co
m

po
ne

nt
s

-20

-19.5

-19

-18.5

-18

-17.5

-17

-16.5

-16

-15.5

-15

m
od

el
 m

ea
n 

E
V

M
 p

lu
s 

on
e 

st
an

da
rd

 d
ev

. (
dB

)

Figure 5.13: LN Mean + σ EVM, Probe Three, 5.725 GHz
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Figure 5.14: LN Mean + σ EVM, Probe Four, 5.725 GHz
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plane wave components (planar components). It is this combination of 3 point sources and

19 plane waves that will be used for the remainder of the channel modeling at all frequencies

for all probes, as this combination is of su�cient accuracy for even the worst-case probe and

frequency.

5.5.1 Analysis of Complex Geostatistical Covariance Of Measure-

ments

After determining the number and type of SAF used, the measurement data for a speci�c

frequency and probe can be used in conjunction with the procedure in the previous chapter

to iteratively determine �rst the 3 point sources and then the 19 plane waves. These 22 SAF

evaluated at each measurement point in conjunction with a constant term can be �t to the

measured data using least squares to obtain an initial estimate for the SAF coe�cients, ~β.

This is then used to obtain an estimate of the residual, ~ε. This residual is modeled statistically

as in Sec. 5.1.3. This estimated residual model is then used to re�ne the complex coe�cients

of the model, which is then used to re�ne the residual model, and so forth until convergence

is obtained.

For the purpose of investigating the properties of the empirical and modeled spatial

covariance, the magnitude, real, and imaginary components of the empirically calculated

channel covariance, empirically calculated residual covariance, and model covariance will be

presented for the channel at a single frequency and probe.

First, the magnitude (Fig. 5.15), real (Fig. 5.16) and imaginary (Fig. 5.17) components

of the spatial covariance of the measured channel, and the corresponding spatial power (Fig.

5.18) spectrum are observed for probe one at a frequency of 5.15 GHz. This information is

not used in the channel model, but is useful in comparing characteristics with the empirical
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and modeled residual covariance. Only separations for which signi�cant signal overlap is

achieved are analyzed, producing an oval-shaped region for which the spatial covariance is

calculated.

The measured channel has a high magnitude of spatial cross-covariance along the general

direction of propagation in the test zone, with the magnitude spreading in direction as

separation distance increases (Fig. 5.15). The real and imaginary plots (Fig. 5.16) and

5.17)) have well-de�ned peaks and troughs perpendicular to the expected direction of travel.

Finally, taking the spatial FFT of the windowed complex spatial cross-correlation (Fig. 5.18)

we observe a strong spectral peak with slight spread, at the values of wave vector indicating

wave propagation in the direction away from probe one, as expected. The remainder of the

spectrum is generally 20 dB lower or less than the peak region, and without any signi�cant

peaks or noticeable structure. This would indicate that channel components beyond the

LOS component will be signi�cantly lower in magnitude.

The estimated empirical residual spatial cross-covariance is observed next, resulting from

subtracting the weighted SAF from the measured channel. The magnitude of the empiri-

cal residual spatial cross-covariance as shown in in Fig.5.19 shows a small region of cross-

correlation at very short separation lengths, and low-level cross-covariance at all other sepa-

rations. Occasional small peaks occur at some large separations (e.g. near a separation vector

of (0.2, 0.03)), but relative to small separations, there are comparatively fewer data points

used for the expected values in these calculations, and therefore the estimated expectation

may deviate from the actual mean.

The real part of the estimated empirical residual spatial cross-covariance as shown in Fig.

5.20 exhibits a peak at zero separation, and rapidly drops o� to near-zero cross-covariance

for all other separations. There is a faint low-level pattern in the cross-covariance of low-level
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Figure 5.15: Measured Channel Spatial X-Cov., Mag., Probe One, 5.15 GHz
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Figure 5.16: Measured Channel Spatial X-Cov., Real, Probe One, 5.15 GHz
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Figure 5.17: Measured Channel Spatial X-Cov., Imag., Probe One, 5.15 GHz
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Figure 5.18: Measured Channel Spatial Power Spectrum, Probe One, 5.15 GHz

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 153



CHAPTER 5. STATISTICAL AND FREQUENCY EXTENSIONS OF NEAR-FIELD
CHANNEL MODEL

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

x component of separation vector

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
y 

co
m

po
ne

nt
 o

f s
ep

ar
at

io
n 

ve
ct

or

0

0.5

1

1.5

2

re
si

d.
 s

pa
tia

l c
ro

ss
-c

or
r.

 m
ag

.

#10-6

Figure 5.19: Residual Emp. Spatial X-Cov., Mag., Probe One, 5.15 GHz

peaks and troughs similar in direction to those observed in the real and imaginary cross-

covariance of the channel itself, indicating that a very small part of the deterministic part of

the channel remains in the residual that was not modeled by the SAF. For all purposes the

magnitude of this pattern is signi�cantly less than the peak, and therefore can be neglected

from consideration in choosing a model cross-covariance function.

The imaginary part of the estimated empirical residual spatial cross-covariance as shown

in Fig. 5.21 exhibits positive and negative peaks at separation vectors of approximately (-

0.01,0) and (0.01,0) respectively. In conjunction with the real peak at zero separation, these

individual imaginary positive and negative peaks are included in the Gaussian complex

covariance model selected previously in Sec. 5.1.3, indicating this model was a good choice

for modeling the residual present in our SAF-�tted channel. It should be noted that the

imaginary part of the empirical residual spatial cross-covariance has a similar faint pattern
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Figure 5.20: Residual Emp. Spatial X-Cov., Real, Probe One, 5.15 GHz

with low-level peaks and troughs in directions similar to the real and imaginary channel

spatial cross-covariance plots. Also, the magnitude of the positive and negative imaginary

peaks is lower than the magnitude of the real peak, and is also closer in level to the low-level

pattern, which will have an e�ect on the �tting of the model to the data.

Next, for comparison (and not for use in the model itself), the spatial power spectrum of

the empirical estimated residual is observed (Fig. 5.22), scaled identically to the spectrum

of the channel (i.e. -100 dB to -20 dB). An approximately white spectrum with relative

uniformity across all wave vectors and no well-de�ned peaks shows that the residual is noise-

like and modeling with a cross-covariance model would be practical. Indeed, the spectrum

is relatively uniform, particularly compared to the channel spectrum (Fig. 5.18) which has

well-de�ned peak region. The residual spectrum does have more power in the negative X half

space, and does have a couple small peaks near the wave vector corresponding to the peak in
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Figure 5.21: Residual Emp. Spatial X-Cov., Imag., Probe One, 5.15 GHz

the channel spectrum, which explains the faint patterns in the real and imaginary residual

cross-correlation plots reminiscent of the channel cross-correlation real and imaginary plots.

It is possible that adding additional plane waves to the SAF set could account for these

peaks and further whiten the residual spectrum, but this would add unnecessary complexity

to the model for the accuracy we wish to achieve.

With the empirical residual spatial cross-covariance calculated for the channel residual,

the procedure from Sec. 5.1.3 can be applied to �t the empirical data to a complex Gaussian

covariance model. This �tting process yields the covariance at zero distance (directly taken

as the empirical cross-covariance at zero separation), an angle of maximum range (θ), the

maximum range coe�cient aθ, and minimum range coe�cient aφ, as well as the translation

vector ~c. These parameters minimize the di�erence between the model and the empirical

cross-covariance through the use of a global search algorithm. This procedure resulted in
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Figure 5.22: Residual Emp. Spatial Power Spectrum, Probe One, 5.15 GHz

the cross-covariance model yielding Figs. 5.23, 5.24, and 5.25.

Comparing the model cross-covariance magnitude (Fig. 5.23) to empirical cross-covariance

magnitude (Fig. 5.19), we notice that the model has equivalent zero-separation magnitude

to the empirical, and has a similar rate of drop-o� in cross-correlation as separation distance

increases. While the empirical separation sampling rate doesn't provide enough resolution

to obtain the maximum and minimum ranges as well as the angle of maximum range by

visual inspection with certainty, it does appear that the angle of maximum range could be

approximately 0 radians as the width of the peak region appears longer along the X axis

than in any other direction. In the model, the angle of maximum range appears to be in the

direction of the LOS signal, perhaps in�uenced by the small residual pattern in the direction

of the LOS signal observed in the real and imaginary LOS plots. With the exception of the

angle of maximum range di�ering slightly (and for reasons that are expected), the model is
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reasonably close to the observed empirical magnitude plot.

Figure 5.23: Residual Model Spatial X-Cov., Mag., Probe One, 5.15 GHz

Comparing the model to empirical real cross-covariance plots (Figs. 5.24 and 5.20 respec-

tively), the real component appears to have identical real cross-covariance at zero separation

between the two plots, and both plots rapidly decrease in magnitude to zero in all separa-

tion directions. Once again, due to limited spatial resolution, the shape and orientation of

the empirical cross-covariance peak is not observable by inspection, but the maximum and

minimum range of the model are within a similar short separation range as in the empirical

plot, and thus once again the model is reasonably close to the observed empirical real plot.

Finally, comparing the model to empirical imaginary cross-covariance plots, as shown

in Figs. 5.25 and 5.21 respectively, the separation of the positive and negative peaks near

zero-separation are similar, and the region around these peaks is zero cross-correlation in

both plots. The magnitudes of the two empirical peaks are approximately two orders of
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Figure 5.24: Residual Model Spatial X-Cov., Real, Probe One, 5.15 GHz

magnitude higher than the corresponding model peaks, and the model has the axis along

which the two peaks are located in the direction of the small residual pattern (the LOS

direction) instead of along the X axis as in the empirical plot. The direction of the axis

of the peaks once again is likely due to the residual pattern, however the deceased peak

magnitudes are possibly due to either the global search algorithm becoming consistently stuck

in a local minimum when searching for parameters that minimized the di�erence between

the model and empirical imaginary components, or the residual signal beyond the two peaks,

which is only slightly lower in magnitude than the two peaks, signi�cantly di�ered from zero

and had a disproportionate e�ect on the calculation of the imaginary component. Further

investigation of this is necessary, but through experimentation, this global optimization �t

model was su�ciently accurate for our model and was not pursued further.

With SAF chosen and a su�ciently-accurate method for modeling the residual cross-
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Figure 5.25: Residual Model Spatial X-Cov., Imag., Probe One, 5.15 GHz

covariance in terms of parameters, Geostatistical Regression (Sec. 5.1.4) is applied to itera-

tively re�ne the estimates of the SAF complex coe�cients and the residual cross-covariance

model parameters until all coe�cients and parameters converge. This collection of SAF,

coe�cients, and parameters allow for channel estimation using Geostatistical Kriging (Sec.

5.1.5) at any location in the test zone, for the probe and frequency combination for which

the model was generated.

As an aside, model estimations at measurement points will estimate the residual as the

actual measurement residual, while estimations between measurement points will estimate

the residual based on the spatial cross-covariance model in conjunction with measurement

residuals at nearby points. In a sense, the method of Kriging is statistically-informed inter-

polation. Because model estimates at measurement points are almost exactly equal to the

measurement, the error vector is approximately zero, and EVM at the measurement points
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trends towards negative in�nity. As such, in subsequent sections, the EVM of the estimated

channel formed by the product of the SAF and complex coe�cients ~β after the Geostatistical

Regression process at all measurement points will be used to evaluate model accuracy.

Instead of running this entire procedure at each probe and frequency combination, the

method of determining a set of SAF at a base frequency and re-using a frequency-scaled

version of this set at a wide range of frequencies (as presented in Sec. 5.2) was investigated.

5.5.2 Selected Wideband Frequency Bands for Modeling

A method of applying a set of SAF at an arbitrary base frequency f0 to a band of near

frequencies was speci�ed in Sec. 5.2. To e�ectively apply this method to our dataset, it

was important to determine what bandwidth above or below the base frequency for which

a set of SAF could be re-used while still maintaining acceptable accuracy. We chose various

arbitrary base frequencies for all probes within our dataset, established a set of SAF at

each base frequency, and then �tted frequency-scaled versions of the SAF to the channel

measurements at each frequency within 100 MHz of the base frequency. While frequencies

above the base frequency exhibited a rapid increase in EVM, frequencies below each base

frequency generally exhibited a small increase of EVM and in many cases a decrease of EVM.

Further investigation determined that a set of SAF could be used up to 160 MHz below the

base frequency in all cases before a signi�cant increase in EVM was observed. As such, we

chose 160 MHz bands to model using SAF calculated at a base frequency at the end of each

band. For each probe, the measurement set was divided into bands from 5.15 GHz to 5.31

GHz (with base frequency 5.31 GHz), 5.31 GHz to 5.47 GHz (with base frequency 5.47 GHz),

5.47 GHz to 5.63 GHz (with base frequency 5.63 GHz), and a �nal shorter band from 5.63

Ghz to 5.725 GHz (with base frequency 5.725 GHz).
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5.5.3 Performance Analysis of Frequency-Scaled Spatial Attribute

Functions

Using the base frequencies and frequency bands speci�ed, the SAF of each base frequency

were scaled to each measurement frequency in the band and used to calculate coe�cients and

model parameters using Geostatistical Regression (Sec. 5.1.4), using the procedure speci�ed

in Sec. 5.2.1. The measured signal at each frequency in a band, scaled SAF and calculated

coe�cients at each frequency were used to calculate the residual and EVM at each frequency.

Because showing a plot of the LN mean EVM of each combination of band and probe (a

total of 16 plots) would be super�uous, two such selected plots will be included here.

Figs. 5.26 and 5.27 show two representative probe and band combinations, for probe

one band four, and probe four band three respectively. Probe 1 band 4 has the worst

representative increase in EVM as frequency decreases from the base frequency (still less

than a 2 dB increase). It should be noted that frequencies in this band below 5.63 GHz

are unused as they overlap with band three, and therefore the 5.56 to 5.63 GHz range with

increased EVM does not adversely a�ect the model accuracy. Probe four band three shows

a general decrease in LN mean EVM as frequency decreases, showing that using the scaled

SAF at these frequencies is even more accurate than their use at the base frequency of this

band!

All other bands have performance between these two relative extremes, and therefore

the use of scaled SAF from a base frequency over a lower band of 160 MHz does not have

a signi�cant detriment to model accuracy, while saving signi�cant computational cost of

iteratively determining a separate set of SAF at each frequency.

This process has empirically generated all complex SAF coe�cients and model param-
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Figure 5.26: Empirical LN Mean EVM vs. Freq., Probe One Band Four
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Figure 5.27: Empirical LN Mean EVM vs. Freq., Probe Four Band Three
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eters at each frequency using scaled SAF. These empirical parameters can be modeled as

polynomial functions of frequency. This process is described and evaluated in the following

section.

5.5.4 Spatial Attribute Function Set Extension to Wideband Model

The procedure in Sec. 5.2.2 (polynomial regression of each parameter versus frequency)

is applied to the magnitude and phase of each of the 23 coe�cients in ~β, the values of the

three parameters in ~θ, to σ2, and the values of the two parameters in ~c. This is performed

for each probe and each band, for a total of 52 regressions by 16 bands.

The degree of each polynomial parameter regression was selected to closely following

the trends of the modeled parameter over all instances of that parameter for all bands and

probes. For the magnitude and phase models of each value of ~β, a 13th-order polynomial and

a 2nd-order polynomial respectively are �t to the magnitude and phase of each value of beta

over the frequencies of each band and probe. For each value of σ2, ~θ, and ~c, a 13th-order

polynomial model was also �t. In the case of the phase of ~β, every plot was observed to

be primarily linear over frequency, so a low-order polynomial was su�cient to describe this

parameter. All other parameters occasionally had characteristics that required a higher-

order polynomial to accurately follow the trend of the parameter over all frequencies in a

band.

Once again, due to the large data set, A representative selection of empirical and modeled

parameters versus frequency is presented. Magnitude and phase of a point source coe�cient

β1 for probe one band two as in Figs. 5.28 and 5.29 respectively, magnitude and phase of

a plane wave coe�cient β4 for probe two band one as in Figs. 5.30 and 5.31 respectively,

values of σ2 for probe two band four as in Fig. 5.32, and values of c1 for probe three band
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two as in Fig 5.33.
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Figure 5.28: Emp. and Poly. Model of β1 Mag. vs. Freq., Probe One Band Two

In general, the empirical parameters being modeled range from essentially noise-free

(phase plots in Figs. 5.29 and 5.31) and very low noise (magnitude of β1 in Fig. 5.28) to

relatively constant variance noise following a clear trend (c1 in Fig. 5.33). In all cases, the

polynomial model closely follows the trend of the parameter being modeled. The statistics

of the residual of this polynomial �t could be used to determine the error of each model, but

this information is super�uous in the context of the goal of this work. Evaluation of this

polynomial model method will be determined empirically through its e�ect on EVM relative

to the EVM from the use of empirical model parameters.
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Figure 5.29: Emp. and Poly. Model of β1 Phase vs. Freq., Probe One Band Two
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Figure 5.30: Emp. and Poly. Model of β4 Mag. vs. Freq., Probe Two Band One
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Figure 5.31: Emp. and Poly. Model of β4 PHase vs. Freq., Probe Two Band One
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Figure 5.32: Emp. and Poly. Model of σ2 vs. Freq., Probe Two Band Four
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Figure 5.33: Emp. and Poly. Model of c1 vs. Freq., Probe Three Band Two

5.5.5 Wideband Model Accuracy

Polynomial model ~β values used in conjunction with frequency-scaled SAF were used to

estimate the channel at all measurement points for all frequencies in each band, and the LN

mean EVM was calculated. Two representative probe and band EVM plots are included

here, Probe one band four as in Fig. 5.34 and Probe four band three as in Fig. 5.35. These

were selected to match the plots of EVM calculated using empirical values of ~β as in Figs.

5.26 and 5.27, for direct comparison so that the e�ect of parameter polynomial modeling on

EVM can be observed.

The EVM observed in Fig. 5.34 follows the same trend as Fig. 5.26, with small increases

in EVM at around 5.61 GHz, 5.66 GHz, and 5.69 GHz. Likewise, Fig. 5.35 follows the same

trend as Fig. 5.27 with small increases in EVM at about 5.51 GHz, 5.59 GHz, and 5.61 GHz.
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Figure 5.34: Modeled LN Mean EVM vs. Freq., Probe One Band Four
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Figure 5.35: Modeled LN Mean EVM vs. Freq., Probe Four Band Three
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The following plots show the calculated di�erence at each frequency between the Em-

pirical and Polynomial parameter model LN mean EVM. Fig 5.37 shows the di�erences for

probe one band four, and Fig 5.36 shows the di�erences for probe four, band three. In both

cases, the increase in LN mean EVM using the polynomial parameter models is between 0

and 0.25 dB, with two to three small frequency ranges spiking up to less than 0.4 or 0.5 dB

increase in EVM. No other LN mean EVM di�erence plot for any other probe or band was

observed to have a di�erence of greater than 0.5 dB, and in general much lower.
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Figure 5.36: Increase of LN Mean EVM From Emp. to Model vs. Freq., Probe 1 Band 4

This result indicates that the use of a polynomial parameter model has an almost negli-

gible e�ect on model accuracy, and can be used in place of the empirical parameters at each

frequency. This completes the generation and validation of a channel model for the Octobox

small anechoic chamber.
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Figure 5.37: Increase of LN Mean EVM From Emp. to Model vs. Freq., Probe 4 Band 3

5.6 Conclusions

A complete channel model in terms of receiver position, probe number, and frequency

is the result of the application of the methods contained within this chapter to a set of

broadband spatial channel measurements. The frequency and probe is mapped to a modeled

band, a set of spatial attribute functions for that band is scaled to the selected frequency

and evaluated at the receiver position, and then multiplied by coe�cients calculated as a

function of frequency. This description of the channel can be evaluated at any position in

the modeled test zone, at any frequency in the range of analysis. In addition, the residual

of nearby measurement points can be used in conjunction with a statistical model with

parameters calculated as a function of frequency to estimate the residual at the receiver

position, further re�ning the channel estimate.
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While this model is limited to vertically-polarized dipoles along a speci�c plane in the

test zone, it could be easily extended to include three-dimensional sampling of a test zone,

orthogonal receiver dipole polarizations, additional probe positions, etc. Each added item

will add an extra dimension to the model space and will require exponentially more measure-

ment points. Without a multi-port VNA, an automated receiver positioning system, and

signi�cant computing power for data processing, such additional complexity may make this

added complexity infeasible.

In the next chapter, this model is used in the generation of a MIMO channel with receiver

antennas at arbitrary positions in the test zone, using the channels modeled from each of

the four probes, over the entire 5 GHz WiFi frequency range. An evaluation of capacity

and spatial correlation of arbitrary DUT sizes and con�gurations can be performed over the

entire test zone to predict DUT performance within the chamber.
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CHAPTER 6

Application of Small Chamber Model to

MIMO Analysis

The purpose of this chapter is to use the channel model developed and tested in the

previous two chapters, speci�cally the model developed using the small anechoic chamber

measurement set, in an analysis of expected MIMO performance in the small chamber chan-

nel. The contribution of this chapter is to show how our channel model can be used in

standard MIMO analysis. This chapter revisits the channel magnitude and phase in ad-

dition to illustrating the broadband Channel Impuslse Response (CIR) (Sec. 6.1), then

concisely applies this model to investigate spatial correlation in the test zone for each of the

four separate probe channels (Sec. 6.2). Also, 4×4 MIMO wideband capacity is investigated

over the small chamber test zone as a function of DUT center position using 4 antenna DUTs.

This analysis is performed for several DUT antenna spacings (Sec. 6.3).

6.1 Small Anechoic Chamber Channel and Impulse Re-

sponse

In a small anechoic chamber, such as the one utilized for a measurement campaign as

in the previous chapter, each probe antenna and receiver antenna pair forms a broadband

SISO channel. This channel, as modeled in the previous chapter, is a function of frequency

and receiver position, H(f, x, y). Figs. 6.1 and 6.2 illustrate a realization of the model for
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probe one at a �xed f = 5.15 GHz (magnitude and phase respectively), with more densely

sampled X and Y positions in the test zone than in the measurement campaign.
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Figure 6.1: Probe One (Lower Right) Channel Model Mag. Over Test Zone

In addition to observing the model for a �xed frequency and observing magnitude and

phase over X and Y positions, the channel can be observed for a �xed (X, Y ) position,

varying frequency. This frequency response for a �xed (X, Y ) can be considered a transfer

function H(f). This transfer function at (X, Y ) can then be transformed from the frequency

domain to the time domain to obtain a Channel Impulse Response (CIR), h(t). If the transfer

function H(f) is evenly sampled with N complex samples over the bandwidth of the channel

model (in our model from 5.15 GHz to 5.725 GHz, a bandwidth of 575 MHz), then the

sampled frequency response is converted to the CIR using the following procedure from [58]:

1. Discard the �nal frequency domain sample in the sampled bandwidth B, leaving N−1

samples from fmin to fmax − B
N−1
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Figure 6.2: Probe One (Lower Right) Channel Model Phase Over Test Zone

2. Perform an IFFT shift to rearrange the N − 1 frequency domain samples to prepare

the data for an inverse fast Fourier transform (IFFT).

3. Perform an IFFT on the shifted frequency domain samples.

4. Perform a phase shift in the time domain by ej2πfc , where fc is the center frequency

of the sampled frequency band (fc = fmin + B
2
). This is the equivalent to shifting the

passband spectrum to the baseband spectrum. The result is the CIR.

5. Calculate the time domain sample time, tR = 1
B
.

In the end, this entire procedure is encapsulated in a single expression for the CIR

h(t) sampled at multiples of tR, h(ntR) = i�t(i�tshift [H (1 : (N − 1))]) · e−j2πfc [58]. The

command i�t performs an inverse fast Fourier transform, while i�tshift shifts the order of the
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�rst and second halves of the data array to present the frequency response in the expected

order to the i�t procedure.

The CIR magnitude can be converted to dB, and normalized such that the peak of

the CIR is equal to 0dB. A CIR that decays gradually is indicative of a multipath-rich

environment. Smaller peaks after the initial peak can indicate strong multipath clusters

that have a delayed arrival relative to a line of sight (LOS) component (or relative to other

clusters). Figs. 6.3 - 6.6 illustrate the CIR generated from the channel model for a receiver

at the chamber center for each of the four probes.

0 0.05 0.1 0.15 0.2 0.25 0.3

time (7 s)

-60

-50

-40

-30

-20

-10

0

C
IR

 p
ow

er
 (

dB
)

Figure 6.3: Probe One Channel Impulse Response at Chamber Center

All four CIR plots indicate a sharp peak with rapid decay, with very subtle features

shortly after the peak at a level of about -15 to -28 dB, potentially indicating a couple of

highly-attenuated multipath components. As the absorbing material is rated to attenuate

re�ections by about -20 dB, and all multipath distances are extremely short and thus would
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Figure 6.4: Probe Two Channel Impulse Response at Chamber Center
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Figure 6.5: Probe Three Channel Impulse Response at Chamber Center
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Figure 6.6: Probe Four Channel Impulse Response at Chamber Center

have travel time nearly as short as the LOS component, the observed features are as expected.

The CIR can be used to estimate an important characteristic of MIMO channel perfor-

mance, spatial correlation, which is explained in the following section.

6.2 Small Anechoic Chamber Spatial Correlation Analy-

sis

An analysis of spatial correlation is an important tool in understanding the nature and

expected performance of a MIMO channel. As spatial correlation increases between elements

at the transmitter and/or receiver of a MIMO system, the rank of the MIMO channel matrix

is reduced (as elements in channel matrix rows and/or columns become correlated and have

less variation), and the capacity of the channel decreases.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 178



CHAPTER 6. APPLICATION OF SMALL CHAMBER MODEL TO MIMO ANALYSIS

In the literature, it is common to utilize a sampled or simulated CIR to obtain spatial

correlation. Ka�e et al. specify an equation (6.1) to calculate receiver wideband spatial cor-

relation rRXi,j given the impulse responses at two receiver locations (i and j) from transmitter

m, notated him and hjm [59].

rRXi,j =
E[himh

∗
jm]− E[him]E[h∗jm]√

(E[|him|2]− |E[him]|2)(E[|hjm|2]− |E[hjm]|2)
(6.1)

In this equation E is the expectation operator over CIR delay time, and ∗ is the complex

cojugation operator.

To observe the e�ect of spatial correlation over the entire test zone, spatial correlation

was investigated for 31 separation distances ranging from 0 to 4λ. For each separation

distance, 30 random pairs of points in the test zone separated by the separation distance

(with arbitrary uniformly-random orientation) were selected. At each pair of points, the pair

of CIR were evaluated using the procedure described in the previous section. The spatial

correlation between the pair of points was calculated using (6.1). The absolute spatial

correlation was averaged for all 30 pairs of points at each separation distance. This yielded

an empirical estimate of spatial correlation versus spatial separation. This procedure was

repeated for the channels of each of the four probes. Figs. 6.7 - 6.10 show the empirical

spatial correlation versus spatial separation for each of channels from the four probes. A 5th

order polynomial was �t to each of the empirical spatial correlation data sets, and are also

included in these plots.

All channels have very similar spatial correlation versus separation, with spatial corre-

lation slowly decreasing from 1 to about 0.7 or 0.8 at a separation of 4λ. This behavior is

typical of a LOS channel and is similar to the receiver spatial correlation plot for an indoor
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Figure 6.7: Probe One, Empirical and Polynomial Fit Spatial Correlation vs. Separation
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Figure 6.8: Probe Two, Empirical and Polynomial Fit Spatial Correlation vs. Separation
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Figure 6.9: Probe Three, Empirical and Polynomial Fit Spatial Correlation vs. Separation
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Figure 6.10: Probe Four, Empirical and Polynomial Fit Spatial Correlation vs. Separation
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LOS environment in [59], which also decreases from 1 to just below 0.8 between 0 and 4λ.

This would indicate that the channel inside the small anechoic chamber behaves like an LOS

dominant channel.

Also of interest, is the distribution of spatial correlation for �xed separations. The empir-

ical spatial correlation was calculated as a mean of 30 random location pairs in the chamber.

Rather than averaging the 30 spatial correlations calculated for a set of constant separation,

the distribution of those 30 spatial correlation values can be plotted as a CCDF for each

probe and a selected set of �xed separations. Figs. 6.11 - 6.14 each show the CCDF for λ
4
,

λ
2
, λ and 3λ

2
for the channel corresponding to a probe.
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Figure 6.11: Probe One, Empirical Spatial Correlation CCDFs vs. Separation

In all four plots, the CCDF for λ
4
is the right-most CCDF curve. For probes two through

four, one hundred percent of the observed spatial correlations were above 0.95, and for all

four probes, one hundred percent of the spatial correlations were above 0.925. For probe
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Figure 6.12: Probe Two, Empirical Spatial Correlation CCDFs vs. Separation
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Figure 6.13: Probe Three, Empirical Spatial Correlation CCDFs vs. Separation
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Figure 6.14: Probe Four, Empirical Spatial Correlation CCDFs vs. Separation

four in Fig. 6.14, the λ
2
CCDF curve was nearly as high as the λ

4
curve. For all probes, in

almost all cases the λ
2
CCDF curve was the second right-most CCDF curve throughout. One

hundred percent of spatial correlations for λ
2
were above 0.87 for all four probes.

With the exception of probe four, the CCDF curves of λ and 3λ
2
all closely tracked each

other, with the 3λ
2
CCDF and the λ CCDF curves crossing each other in multiple places. Only

probe four had strictly-ordered CCDF curves of 3λ
2
to λ

4
from left to right for all probabilities.

The following section will investigate the e�ect of DUT antenna separation and size on

MIMO capacity.
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6.3 Wideband MIMO Capacity Using Small Chamber

Channel Model

The instantaneous wideband MIMO capacity formula (2.8) can be used in conjunction

with our channel model for each probe. For a 4 × 4 MIMO system (MRx = MTx = 4),

four receiver antenna locations are selected in the test zone, and the channel hi,j,k from each

of the four probe antennas (j) is calculated to each of the four receiver locations (i) at a

selection of frequencies (k, with spacing ∆f over a frequency range W , forming F frequency

samples). All values of hi,j,k are used to populate H[f ], which is then normalized as in

(2.9). An arbitrary SNR ρ is chosen for the purposes of analysis (often chosen as the linear

equivalent of 10 dB, 15 dB, or 20 dB in the literature).

6.3.1 MIMO Capacity Analysis System Description

For analysis, 20 frequencies evenly-spaced from 5.15 GHz to 5.725 GHz were selected.

Four types of simulated square DUT antenna arrays were chosen, with antennas located on

the corner of a square. The four square sizes were chosen to be 0.25λ× 0.25λ, 0.5λ× 0.5λ,

λ × λ, and 1.5λ × 1.5λ, allowing for the MIMO capacity to re�ect the spatial correlations

investigated in the previous section (as the majority of antenna pairs of the receiver will have

a separation equal to a side length of the square).

Each simulated DUT was moved along an 8× 8 grid of DUT center locations within the

test zone, allowing the DUT to fully cover the entire test zone over the course of the 64

measurements. Due to varying DUT sizes, the grid of center locations had to decrease in

size as DUT dimensions increased to allow the simulated DUT to remain in the test zone

at all times. As a result, plots of capacity versus simulated DUT center location will have
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smaller X and Y dimensions for simulated DUTs with increased dimensions.

6.3.2 MIMO Capacity and Eigenvalue Results

Figs. 6.15 - 6.18 show the wideband capacity of the four simulated DUT sizes across

the test zone. The X and Y coordinates indicate the center position of the simulated DUT

where that capacity was calculated.
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Figure 6.15: 0.25 λ × 0.25 λ DUT WB Cap. Vs. DUT Center Pos.

Common trends across all four DUT sizes include greater capacity on the right side of

the test zone than the left side, generally lower capacity in the bottom left (front left of

the chamber), and capacities across the test zone varying by about 2dB in all cases. The

0.25λ × 0.25λ DUT as in Fig. 6.15 exhibited a capacity range of approximately 6.8 to 8.5

bps/Hz, the 0.5λ× 0.5λ DUT as in Fig. 6.16 exhibited a capacity range of 8.4 to 10 bps/Hz,

the λ × λ DUT as in Fig. 6.17 exhibited a capacity range of 9.2 to 11 bps/Hz, and the
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Figure 6.16: 0.5 λ × 0.5 λ DUT WB Cap. Vs. DUT Center Pos.
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Figure 6.17: λ × λ DUT WB Cap. Vs. DUT Center Pos.
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Figure 6.18: 1.5 λ × 1.5 λ DUT WB Cap. Vs. DUT Center Pos.

1.5× 1.5 DUT as in Fig. 6.18 exhibited a capacity range of 9.8 to 11.8 bps/Hz.

A potentially more useful way of observing each set of 64 capacities is to observe them

as a CCDF rather than plotted versus center coordinate. Figs. 6.19 - 6.22 are plots of the

capacity CCDFs for each of the four simulated DUT con�gurations. The capacity ranges

will remain identical to those observed in the previous four plots, but the distribution of the

observed capacities will be apparent.

The λ
4
× λ

4
DUT appears to have a median capacity of 7.7 bps/Hz, the λ

2
× λ

2
DUT has a

median capacity of 9.1 bps/Hz, the λ×λ DUT has a median capacity of 10 bps/Hz, and the

3λ
2
× 3λ

2
DUT has a median capacity of 11 bps/Hz. The increase in capacity by increasing

a DUT size from λ
4
× λ

4
to λ

2
× λ

2
is more pronounced than further increases in the MIMO

channel present in the small anechoic chamber.

One additional method of characterizing the MIMO channel is to observe the distribution
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Figure 6.19: 0.25 λ × 0.25 λ DUT WB Cap. CCDF
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Figure 6.20: 0.5 λ × 0.5 λ DUT WB Cap. CCDF
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Figure 6.21: λ × λ DUT WB Cap. CCDF
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Figure 6.22: 1.5 λ × 1.5 λ DUT WB Cap. CCDF
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of its eigenvalues [60]. An eigenvalue decomposition of an N ×N channel matrix will yield

N eigenvalues. The number of non-zero eigenvalues of the channel matrix H, which is also

the rank of H, indicates the number of spatial degrees of freedom present in the channel [13].

Greater spatial degrees of freedom translate into higher MIMO capacities, especially in chan-

nels where all N eigenvalues are nearly-identical. Practically, eigenvalue decomposition will

likely produce N non-zero eigenvalues in a real channel in almost all circumstances, however

if one or more of these is signi�cantly lower than others and/or nearly equal to zero, then

the number of spatial degrees of freedom is e�ectively lower than N .

Using the channel data generated for the previous set of plots, for each simulated DUT

we have 20 frequencies × 64 center positions = 1280 narrowband MIMO channel matrices.

If we perform an eigenvalue decomposition to obtain the eigenvalues of each, normalize the

eigenvalues such that their linear sum is equal to 1, and then sort the eigenvalues by size, we

can observe a CCDF for each of the four eigenvalues for each simulated DUT con�guration.

This allows us to evaluate the distribution of each eigenvalue, and determine if it is too low

to be a spatial degree of freedom for that simulated DUT in the chamber. Figs. 6.23 - 6.26

each plot the CCDF of eigenvalues 1 through 4 (ε1 to ε4; the variable ε will be used for

eigenvectors instead of the traditional λ to avoid confusion with wavelength) for each of the

four simulated DUT con�gurations.

Fig. 6.23, the λ
4
× λ

4
DUT, has a ε4 that is likely at least 20 dB smaller than ε1 and ε3

that is likely 13 dB smaller than ε1. Even ε2 is likely at least 5 dB smaller than ε1, indicating

that the channel for the λ
4
× λ

4
DUT practically only has about one or two degrees of spatial

freedom at most. This is a poorly-conditioned channel matrix, and as a results the capacity

will be low, which is exactly what was observed in the corresponding capacity CCDF Fig.

6.19.
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DUT Channel Eigenvalue CCDF
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Figure 6.25: λ × λ DUT Channel Eigenvalue CCDF
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DUT Channel Eigenvalue CCDF
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Fig. 6.24, the λ
2
× λ

2
DUT, still has a ε4 that is likely 15 dB lower than ε1. ε3 is

likely about 11 dB smaller than ε1, and ε2 is likely about 4dB smaller or less. This is still a

relatively poorly-conditioned channel matrix with about two or possibly three spatial degrees

of freedom.

Fig. 6.25 shows ε4 still too low to be considered a degree of freedom, but has ε3 and ε2

closing in on ε1. This indicates a channel that is closer to three spatial degrees of freedom,

even though the fact that the three eigenvalues are not close in value indicates that this

channel matrix still would not be well-conditioned even for a 3× 3 MIMO channel.

Finally, Fig. 6.26 shows the ε2 CCDF very close to the ε1 CCDF. ε3 is also slightly

greater than in the previous plot. ε4 is also higher, but is still close to being excluded as a

spatial degree of freedom. This channel could therefore be considered to have three spatial

degrees of freedom or possibly even four, with better conditioning than that of all smaller

DUT con�gurations.

This analysis has shown the usefulness of the contributed channel model in extensively

analyzing the MIMO channel characteristics of a system such as the small anechoic chamber.

This information provides feedback to the MIMO performance of such a chamber, helps

validate whether this system meets the criteria of standardized MIMO OTA testing, and can

be used to help improve the chamber design to better meet the needs of a low-cost MIMO

OTA testing solution.

6.4 Conclusions

In this chapter, we have investigated how the small anechoic chamber MIMO channel,

modeled in the previous two chapters, performs by metrics including spatial correlation,

capacity, and channel Eigenvalue distributions. The channel exhibits high spatial correlation
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even at separations up to 4λ, indicating that the MIMO channel in the chamber is LOS-

dominant. Wideband capacity and eigenvalues, calculated over the entire test zone and

frequency range of the model for multiple simulated DUT sizes, further supported the notion

that the chamber MIMO channel is primarily LOS, yielding eigenvalue distributions that even

with 3λ
2
spacing never truly yielded channel matrices that were full-rank in a 4 × 4 system

or well-conditioned. This analysis of the MIMO performance of a modeled small anechoic

chamber channel simultaneously has showed the usefulness of our channel model and how

it can be applied to performance evaluation of real-world OTA test solutions. Future work

may include investigating the chamber MIMO channel for other DUT con�gurations and

orientations, including ULA, rectangular arrays, and larger-dimension arrays.
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Conclusion and Future Work

This dissertation has provided an analysis of near-�eld MIMO systems of the type that

are present in a small anechoic chamber testing environment. This analysis has included a

feasibility study of standard-compliant electric �eld generation in a small anechoic chamber

for MIMO-OTA testing, investigating parameters such as chamber size and probe antenna

array size and spacing. In addition, and more signi�cantly, this dissertation contributed

a novel method of modeling a measured or numerical near-�eld channel using a sum of

weighted joint spatial attribute functions plus a statistically-modeled residual re�nement

term based on neighboring measurements. Model parameters for a series of narrowband

models were �t to functions of frequency, thus producing a wideband channel model. This

modeling technique was used for a measurement campaign of a small anechoic chamber, and

the resulting models were utilized in a MIMO system analysis of the small anechoic chamber.

The modeling method in this dissertation achieved an accuracy of below -15 dB error

vector magnitude for at least 84 percent of measurement locations in the de�ned test zone

for all frequencies analyzed. This accuracy is prior to application of the modeled residual

term which further increases model accuracy, particularly at locations near measurement

points.

An investigation into MIMO system performance of a small anechoic chamber using a

model obtained from a measurement campaign showed that the channel in the chamber

exhibited high spatial correlation, generally greater than 0.8 for distances of 4λ or less.

This spatial correlation is indicative of a highly line of sight environment, one in which
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MIMO systems exhibit limited capacity gain from spatial diversity. Further investigation

of capacity and eigenvalue decomposition of the MIMO channel matrix versus a range of

simulated DUT antenna separations over the test zone of the chamber showed that DUTs

with antenna spacing of λ
4
exhibited approximately a single degree of spatial freedom, while

a separation of 3λ
2
exhibited around 3 degrees of spatial freedom, though the third eigenvalue

was still well below the �rst two, yielding a poorly-conditioned channel matrix.

The results of this dissertation can be used to inform the design or re�nement of a small

anechoic chamber environment, with the goal of reducing spatial correlation of the system.

It can also be used to quantify expected DUT performance in a small anechoic chamber,

allowing for test metrics and repeatable testing design.

Future work expanding on these results includes expanding the model to include a larger

test zone in the chamber, extending the model to additional frequency bands for other wire-

less technologies, expanding the test zone to three dimensions to model the channel as a

three-dimensional function of space and frequency, investigating the e�ect of receiver polar-

ization on the channel and incorporating this information into the channel model. Also, a

measurement campaign varying transmitter position can be performed to investigate trans-

mitter spatial correlation, and potentially extend the model as a function of both receiver

and transmitter location, rather than discrete models for single transmitter locations. Fi-

nally, the e�ects of coupling between multiple DUT antennas on the channel model can be

investigated, modeled, and incorporated into this channel model. Due to the extremely large

possible con�gurations and electromagnetic properties of a DUT, the challenges of deciding

a proper way to incorporate this into a channel model that will be applicable to any DUT

in the chamber proved beyond the scope of this dissertation.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 197



References

[1] 3GPP releases. [Online]. Available: http://www.3gpp.org/speci�cations/releases

[2] Y. Tak and S. Nam, �Mode-based computation method of channel characteristics for

a near-�eld MIMO,� IEEE Antennas and Wireless Propagation Letters, vol. 10, pp.

1170�1173, 2011.

[3] H. Hirayama, G. Matsui, N. Kikuma, and K. Sakakibara, �Improvement of channel ca-

pacity of near-�eld MIMO,� Proceedings of the Fourth European Conference on Antennas

and Propagation, IEEE, pp. 1�4, April 2010.

[4] Octoscope, Inc. octobox OBS-14 and OBS-15 high gain antenna array datasheet.

[Online]. Available: https://www.octoscope.com/English/Collaterals/Documents/

octoBox_OBS-14_OBS-15_High-Gain_Antenna_Datasheet.pdf

[5] Pasternack. PE51083 rubber duck antenna datasheet. [Online]. Available: https:

//www.pasternack.com/images/ProductPDF/PE51083.pdf

[6] Keysight Technologies. Keysight E5063A ENA vector network analyzer datasheet.

[Online]. Available: https://literature.cdn.keysight.com/litweb/pdf/5991-3614EN.pdf?

id=2424803

[7] R. Bajaj, S. Bates, B. P., K. Bennett et al. Connecting america: The national broad-

band plan. [Online]. Available: https://transition.fcc.gov/national-broadband-plan/

national-broadband-plan.pdf

198

http://www.3gpp.org/specifications/releases
https://www.octoscope.com/English/Collaterals/Documents/octoBox_OBS-14_OBS-15_High-Gain_Antenna_Datasheet.pdf
https://www.octoscope.com/English/Collaterals/Documents/octoBox_OBS-14_OBS-15_High-Gain_Antenna_Datasheet.pdf
https://www.pasternack.com/images/ProductPDF/PE51083.pdf
https://www.pasternack.com/images/ProductPDF/PE51083.pdf
https://literature.cdn.keysight.com/litweb/pdf/5991-3614EN.pdf?id=2424803
https://literature.cdn.keysight.com/litweb/pdf/5991-3614EN.pdf?id=2424803
https://transition.fcc.gov/national-broadband-plan/national-broadband-plan.pdf
https://transition.fcc.gov/national-broadband-plan/national-broadband-plan.pdf


REFERENCES

[8] The path to 5G: as much evolution as revolution. [Online]. Available: http:

//www.3gpp.org/news-events/3gpp-news/1774-5g_wiseharbour

[9] Unleashing 5G with 'High Band' Spectrum. [Online]. Available: http://www.ctia.org/

docs/default-source/default-document-library/high-band-spectrum-april-2016.pdf

[10] J. Xu, D. Goeckel, and R. Janaswamy, �The capacity of MIMO systems with increasing

SNR by electromagnetic analysis,� Wireless Communications, IEEE Transactions on,

vol. 8, no. 9, pp. 4752�4761, 2009.

[11] N. Costa and S. Haykin, Multiple-Input Multiple-Output Channel Models: Theory and

Practice. Wiley, 2010.

[12] J. Te�t and N. Kirsch, �Small anechoic chambers for MIMO-OTA testing,� IEEE Trans-

actions on Instrumentation and Measurement (ready for submission), Aug. 2016.

[13] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge Uni-

versity Press, 2005.

[14] J. Foschini and M. J. Gans, �On the limits of wireless communications in a fading

environment when using multiple antennas,� Wireless Personal Communications, vol. 6,

pp. 315�335, March 1998.

[15] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[16] R. Janaswamy, �E�ect of element mutual coupling on the capacity of �xed length linear

arrays,� IEEE Antennas and Wireless Propagation Letters, vol. 1, no. 1, pp. 157�160,

2002.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 199

http://www.3gpp.org/news-events/3gpp-news/1774-5g_wiseharbour
http://www.3gpp.org/news-events/3gpp-news/1774-5g_wiseharbour
http://www.ctia.org/docs/default-source/default-document-library/high-band-spectrum-april-2016.pdf
http://www.ctia.org/docs/default-source/default-document-library/high-band-spectrum-april-2016.pdf


REFERENCES

[17] H.-S. Lui, H. T. Hui, and M. S. Leong, �A note on the mutual-coupling problems in

transmitting and receiving antenna arrays,� IEEE Antennas and Propagation Magazine,

vol. 51, no. 5, pp. 171�176, Oct 2009.

[18] E. Hansen, Spherical Near-Field Antenna Measurements. Peter Peregrinus Ltd., 1988.

[19] S. Orfanidis. Electromagnetic waves and antennas. [Online]. Available: http:

//www.ece.rutgers.edu/~orfanidi/ewa/

[20] 3rd Generation Partnership Project (3GPP), Inter-Lab/Inter-Technique OTA Per-

formance Comparison Testing for MIMO Devices. Work Group Document:

MOSG120521R9, 2013.

[21] W. Fan, X. Carreno Bautista de Lisbona, F. Sun, J. Nielsen, M. Knudsen, and G. Ped-

ersen, �Emulating spatial characteristics of MIMO channels for OTA testing,� Antennas

and Propagation, IEEE Transactions on, vol. 61, no. 8, pp. 4306�4314, 2013.

[22] G. de la Roche, A. Alayn-Glazunov, and B. Allen, LTE-Advanced and Next Generation

Wireless Networks: Channel Modelling and Propagation. Wiley, 2012.

[23] C. Lotback Patane, A. Skarbratt, R. Rehammar, and C. Orlenius, �On the use of re-

verberation chambers for assessment of MIMO-OTA performance of wireless devices,�

in Antennas and Propagation (EuCAP), 2013 7th European Conference on, 2013, pp.

101�105.

[24] I. Carton Llorente, W. Fan, and G. Pedersen, �MIMO-OTA testing in small multi-probe

anechoic chamber setups,� Antennas and Wireless Propagation Letters, IEEE, vol. PP,

no. 99, pp. 1�1, 2015.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 200

http://www.ece.rutgers.edu/~orfanidi/ewa/
http://www.ece.rutgers.edu/~orfanidi/ewa/


REFERENCES

[25] T. Laitinen, P. Kyosti, T. Jamsa, and P. Vainikainen, �Generation of a �eld with a

laplacian-distributed power azimuth spectrum scattered by a single cluster in a MIMO-

OTA test system based on multiple probe antennas,� in Proceedings of Asia-Paci�c

Microwave Conference (APMC), Dec. 2010.

[26] J. T. Toivanen, T. A. Laitinen, S. Pivnenko, and L. Nyberg, �Calibration of multi-probe

antenna measurement system using test zone �eld compensation,� in 2009 3rd European

Conference on Antennas and Propagation, March 2009, pp. 2916�2920.

[27] J. T. Toivanen, T. A. Laitinen, and P. Vainikainen, �Modi�ed test zone �eld compensa-

tion for small-antenna measurements,� IEEE Transactions on Antennas and Propaga-

tion, vol. 58, no. 11, pp. 3471�3479, Nov 2010.

[28] J. T. Toivanen, T. A. Laitinen, V. M. Kolmonen, and P. Vainikainen, �Reproduction

of arbitrary multipath environments in laboratory conditions,� IEEE Transactions on

Instrumentation and Measurement, vol. 60, no. 1, pp. 275�281, Jan 2011.

[29] P. Kyösti, J. P. Nuutinen, and T. Jämsä, �MIMO OTA test concept with experimen-

tal and simulated veri�cation,� in Proceedings of the Fourth European Conference on

Antennas and Propagation, April 2010, pp. 1�5.

[30] Y. Okano, K. Kitao, and T. Imai, �Impact of number of probe antennas for MIMO

OTA spatial channel emulator,� in Proceedings of the Fourth European Conference on

Antennas and Propagation, April 2010, pp. 1�5.

[31] P. Kyösti and L. Hentilä, �Criteria for physical dimensions of MIMO OTA multi-probe

test setup,� in 2012 6th European Conference on Antennas and Propagation (EUCAP),

March 2012, pp. 2055�2059.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 201



REFERENCES

[32] W. Fan, J. . Nielsen, O. Franek, X. Carreño, J. S. Ashta, M. B. Knudsen, and G. F.

Pedersen, �Antenna pattern impact on MIMO OTA testing,� IEEE Transactions on

Antennas and Propagation, vol. 61, no. 11, pp. 5714�5723, Nov 2013.

[33] W. Fan, F. Sun, P. Kyosti, J. Nielsen, X. Carreno, M. Knudsen, and G. Pedersen, �3d

channel emulation in multi-probe setup,� Electronics Letters, vol. 49, no. 9, pp. 623�625,

April 2013.

[34] P. Kyösti, T. Jämsä, and J. P. Nuutinen, �Channel modelling for multiprobe over-the-

air MIMO testing,� International Journal of Antennas and Propogation, vol. 2012, pp.

1�11, Mar 2012.

[35] A. Khatun, T. Laitinen, V. M. Kolmonen, and P. Vainikainen, �Dependence of error

level on the number of probes in over-the-air multiprobe test systems,� International

Journal of Antennas and Propogation, vol. 2012, p. 6, Mar 2012.

[36] W. Fan, J. . Nielsen, X. Carreño, O. Franek, M. B. Knudsen, and G. F. Pedersen,

�Impact of probe placement error on MIMO OTA test zone performance,� in Antennas

and Propagation Conference (LAPC), 2012 Loughborough, Nov 2012, pp. 1�4.

[37] T. Laitinen, J. Toivanen, P. Kyösti, J. P. Nuutinen, and P. Vainikainen, �On a MIMO-

OTA testing based on multi-probe technology,� in Electromagnetic Theory (EMTS),

2010 URSI International Symposium on, Aug 2010, pp. 227�230.

[38] W. Fan, X. Carreño, J. . Nielsen, K. Olesen, M. B. Knudsen, and G. F. Pedersen, �Mea-

surement veri�cation of plane wave synthesis technique based on multi-probe MIMO-

OTA setup,� in Vehicular Technology Conference (VTC Fall), 2012 IEEE, Sept 2012,

pp. 1�5.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 202



REFERENCES

[39] J.-S. Jiang and M. A. Ingram, �Spherical-wave model for short-range MIMO,� IEEE

Transactions on Communications, vol. 53, no. 9, pp. 1534�1541, Sept 2005.

[40] K. Nishimori, N. Honma, T. Seki, and K. Hiraga, �On the transmission method for short-

range MIMO communication,� IEEE Transactions on Vehicular Technology, vol. 60,

no. 3, pp. 1247�1251, March 2011.

[41] N. Honma, K. Nishimori, T. Seki, and M. Mizoguchi, �Short range MIMO communica-

tion,� in 2009 3rd European Conference on Antennas and Propagation, March 2009, pp.

1763�1767.

[42] N. Gvozdenovic, W. Thompson, M. A. Beach, C. F. Mecklenbräuker, and G. Hilton,

�Short range ultra-wideband multiple input multiple output channel measurements,�

in 2013 IEEE Wireless Communications and Networking Conference (WCNC), April

2013, pp. 2575�2578.

[43] M. K. Ozdemir, H. Arslan, and E. Arvas, �A mutual coupling model for MIMO systems,�

in Wireless Communication Technology, 2003. IEEE Topical Conference on, Oct 2003,

pp. 306�307.

[44] H. Kanj, S. Ali, P. Lusina, and F. Kohandani, �A modeling approach for simulating

MIMO systems with near-�eld e�ects,� in Wireless Technology, 2008. EuWiT 2008.

European Conference on, Oct 2008, pp. 143�146.

[45] M. A. Nikravan, D. H. Kwon, H. G. Schantz, and A. H. Unden, �Near-�eld MIMO

communication utilizing both electric and magnetic �eld components,� in 2014 IEEE

Antennas and Propagation Society International Symposium (APSURSI), July 2014,

pp. 474�475.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 203



REFERENCES

[46] Y. Tak, S. Yun, J. Park, and S. Nam, �Analysis of a near-�eld mimo based on the polar-

ization diversity by using the mode-based approach,� in Antenna Technology and Ap-

plied Electromagnetics (ANTEM), 2012 15th International Symposium on, June 2012,

pp. 1�4.

[47] D. Zhang, �Research on channel capacity characteristics of near-�eld MIMO systems,�

Ph.D. dissertation, University of Fukui, The address of the publisher, 9 2013.

[48] M. Jensen and J. Wallace, �A Review of Antennas and Propagation for MIMO Wireless

Communications,� IEEE Transactions on Antennas and Propagation, vol. 52, no. 11,

pp. 2810 � 2824, Nov 2004.

[49] T. A. Laitinen, P. Kyosti, J.-P. Nuutinen, and P. Vainikainen, �On the number of

OTA antenna elements for plane-wave synthesis in a MIMO-OTA test system involving

a circular antenna array,� in 4th European Conference on Antennas and Propagation

(EuCAP'lO), Apr. 2010.

[50] D. Baum, J. Hansen, and J. Salo, �An interim channel model for beyond-3G systems:

extending the 3GPP spatial channel model (SCM),� in 2005 IEEE 61st Vehicular Tech-

nology Conference, vol. 5, May 2005, pp. 3132�3136.

[51] W. Stutzman and G. Thiele, Antenna Theory and Design. John Wiley and Sons, Inc.,

2012.

[52] T. Smith. Notebook on spatial data analysis (online). [Online]. Available:

http://www.seas.upenn.edu/~ese502/#notebook

[53] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1985.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 204

http://www.seas.upenn.edu/~ese502/#notebook


REFERENCES

[54] R. Mersereau and T. Speake, �The processing of periodically sampled multidimensional

signals,� IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-31,

pp. 188�194, Feb 1983.

[55] B. Engquist and H. Zhao, �Approximate separability of the Green's function of the

Helmholtz equation in the high frequency limit,� Communications on Pure and Applied

Mathematics, vol. 71, pp. 2220�2274, Nov 2018.

[56] N. A. C. Cressie, Statistics for Spatial Data. Wiley, 1993.

[57] D. P. S. De Iaco, �Wind velocity prediction through complex kriging: Formalism and

computational aspects,� Environmental and Ecological Statistics, vol. 23, no. 1, pp.

115�139, Mar 2016.

[58] S. Rey and T. Kuerner, �IEEE 802.15-16-0207-01-003d how to drive the channel impulse

response from a broadband channel transfer function,� IEEE P802.15 Working Group

for Wireless Personal Area Networks, pp. 1�8, Mar 2016.

[59] P. L. Ka�e, A. Intarapanich, A. B. Sesay, J. McRory, and R. J. Davies, �Spatial correla-

tion and capacity measurements for wideband MIMO channels in indoor o�ce environ-

ment,� IEEE Transactions on Wireless Communications, vol. 7, no. 5, pp. 1560�1571,

May 2008.

[60] J. P. Kermoal, L. Schumacher, P. E. Mogensen, and K. I. Pedersen, �Experimental

investigation of correlation properties of mimo radio channels for indoor picocell sce-

narios,� in Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd

Vehicular Technology Conference (Cat. No.00CH37152), vol. 1, Sept 2000, pp. 14�21.

Near-Field MIMO Channel Modeling with Applications to Small Anechoic Chambers 205


	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Importance of Small Chamber MIMO Test Solutions
	Importance of Near-Field MIMO Channel Models

	Contributions, and Outline

	Background
	Fundamental Concepts
	SISO channels
	MIMO
	Near-Field Topics and Mutual Coupling

	Literature Review
	MIMO-OTA Testing
	Near-Field MIMO Channels and Capacity

	Preliminary Investigations
	Hertzian Dipole Field-Based Channel Matrix Formulation
	AWGN Channel
	Normalization
	Capacity Equations
	Channel and Capacity Simulation
	Background for Selection of Free-Space Green's Function as Basis


	Small Anechoic Chamber Feasibility for MIMO-OTA Testing
	Electromagnetic Field Synthesis
	Number of probe antennas
	3GPP SCME Channel Model

	Small chamber system
	Numerical Model
	Computational Electromagnetic Model

	Analytical Results
	Electromagnetic Simulation Results
	Conclusions

	Near-Field Channel Model Framework
	Formulation of Channel using Dipole Arrays
	Mathematical Channel Model with Arbitrary Dipole Orientations
	Numerical Computation of Dipole Array Channel
	Numerical Computation Setup and Results

	Dipole Array Channel with Spatial Attribute Function Decomposition
	Plane Waves as Spatial Attribute Functions
	Point Sources as Spatial Attribute Functions
	Point Source Location
	Inner Product of Point Sources
	Use of Point Source and Plane Waves as Joint Spatial Attribute Functions

	Fitting of Spatial Attribute Functions to Numerical Channel
	Point Source Fitting
	Refinement Using Plane Waves

	Validation of Spatial Attribute Function Selection with Numerical Channel
	Conclusions

	Statistical and Frequency Extensions of Near-Field Channel Model
	Accurate Method of Fitting Spatial Attribute Functions to Measured Data
	Generalized Least Squares
	Covariograms and Spatial Dependence
	Complex Geostatistical Covariance Model
	Geostatistical Regression
	Geostatistical Kriging

	Adapting Spatial Attribute Function Set for a Wideband Model
	Algorithm for Fitting Spatial Attribute Function Set
	Modeling Coefficients as Polynomial Functions of Frequency
	Final Wideband Model Description

	System Description
	Chamber Configuration and Properties
	Antenna Properties
	Measurement Equipment

	Measurement Campaign Description
	Antenna Orientations and Positions
	Chosen Measurement Campaign Positions
	Resulting Dataset

	Modeling of Measurement Data
	Analysis of Complex Geostatistical Covariance Of Measurements
	Selected Wideband Frequency Bands for Modeling
	Performance Analysis of Frequency-Scaled Spatial Attribute Functions
	Spatial Attribute Function Set Extension to Wideband Model
	Wideband Model Accuracy

	Conclusions

	Application of Small Chamber Model to MIMO Analysis
	Small Anechoic Chamber Channel and Impulse Response
	Small Anechoic Chamber Spatial Correlation Analysis
	Wideband MIMO Capacity Using Small Chamber Channel Model
	MIMO Capacity Analysis System Description
	MIMO Capacity and Eigenvalue Results

	Conclusions

	Conclusion and Future Work
	References

