

Innovation for the next generation

AT4025

Electrical Sampling Oscilloscope for Advantest 93K platform | 4 channels

Supports 400GAUI PAM4 Transmitter qualification | High throughput | High sensitivity | Cost effective | SMPM blind-mate RF interface

Summary

The AT line of products is highly integrated for the Advantest V93000 system and fits right underneath the load board, in the cavity of the test head extender. Due to this, the signal path to the DUT is kept extremely short.

The AT line of instruments is made to work for packaged silicon systems as well as for wafer probing and is meant to enable at-speed testing of SerDes, transceivers, amplifiers and other active and passive high-speed digital components. The AT family consists of pattern generators, error detectors and sampling oscilloscopes.

AT4025

50 GHz Electrical DSO

Introduction

The AT4025 is a fully featured, cost effective four channels equivalent time sampling oscilloscope. It can be configured to have an analog bandwidth of 32 or 50 GHz. The memory depth is 256 MSamples. Samples are 16-bit.

Typical Applications

- General time domain measurements of highspeed digital communication signals
- High-speed SerDes testing
- High port count burn-in testing
- Transceiver manufacturing test
- Transceiver evaluation and validation
- Qualification of PAM-N and NRZ drivers.
- TP1-a stress calibration

Key Features

The AT4025 family of DSOs is truly powerful, boasting an extensive set of features and functions that are unique in the industry. These include:

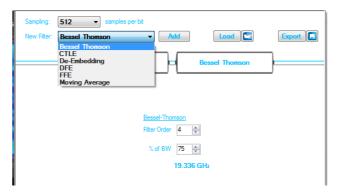
- Up to 100 MHz sampling rate
- Less than 5 seconds TDECQ on a SSPRQ pattern
- Fast pattern capture and DSP thanks to an FPGA-based architecture
- An extensive library of built-in DSP filters such as Bessel-Thomson, CTLE, DFE, FFE, deembedding and component emulation, all available free of charge in the standard GUI.
- User-writable calibration constants
- Can be calibrated up to the DUT to include losses of test fixtures and cables

- Built-in standard masks library
- A complete set of APIs and multiple SmarTest sample code to speed up integration

Specifications (Typical)

Parameter	Specifications
Data format support	NRZ and PAM-4
Intrinsic jitter	200 fs rms
Input Swing Max	1200 mVpp
Rise/Fall Time	9.5 ps
Vertical resolution	16 bits
Electrical channel bandwidth	50 GHz
Electrical channel connectors	SMPM blind mates
Clock input bandwidth	0.1 – 4.4 GHz
Clock input swing	225 ~ 1800 mVpp
Clock input connector	SMA (f), 50Ω
Sampling frequency	70 ~ 100 MHz
Memory	256x16 MSa. (shared bw. 4 channels)
Pattern Capture	Up to PRBS-16 and SSPRQ
SFDR (sine wave) 50 mVpp 1 GS/s	-58 dBc at 10 GHz -53 dBc at 30 GHz
Temperature range	0 ~ 75 °C
Power Rating	12Vdc, 1.5A
Control Interface	GbE
Weight	~ 0.5 kg

Supported Measurements


PAM-4 TDECQ SNDR RLM OMA _{outer} Eye Height by BER Eye Width by BER Top & Base Min & Max One & Zero Transition Time Crossing % AOP OMA Mask Margin Duck to Duck
PAM-4RLMOMA_outerEye Height by BEREye Width by BERTop & BaseMin & MaxOne & ZeroTransition TimeCrossing %AOPOMAMask Margin
PAM-4 OMA _{outer} Eye Height by BER Eye Width by BER Top & Base Min & Max One & Zero Transition Time Crossing % AOP OMA Mask Margin
OMA _{outer} Eye Height by BER Eye Width by BER Top & Base Min & Max One & Zero Transition Time Crossing % AOP OMA Mask Margin
Eye Width by BER Top & Base Min & Max One & Zero Transition Time Crossing % AOP OMA Mask Margin
Top & Base Min & Max One & Zero Transition Time Crossing % AOP OMA Mask Margin
Min & Max One & Zero Transition Time Crossing % AOP OMA Mask Margin
One & Zero Transition Time Crossing % AOP OMA Mask Margin
Transition Time Crossing % AOP OMA Mask Margin
Crossing % AOP OMA Mask Margin
AOP OMA Mask Margin
OMA Mask Margin
Mask Margin
Deal to Deal
Peak to Peak
NRZ Eye Amplitude
Eye Height
Eye Width
Jitter
SNR
ER
VEC
Vrms
DJ & RJ
Noise

Supported DSP Functions

- Frequency response correction of O/E & analog front end.
- Bessel Thomson 4th Order
- CTLE Adaptive/manual
- FFE Adaptive/manual
- DFE Adaptive/manual
- De-embedding S4P
- Emulating S4P
- Normalizing Filter
- Moving average

Applying Filters

Several filters including FFE, DFE, CTLE, Bessel-Thomson, etc are available in NRZ as well as PAM mode. Concatenation of several filters is also possible, and the effect of each filter is shown immediately on the eye or pattern.

One may also import s2p or s4p files to deembed fixtures.

A very useful function in determining the ideal CTLE gain for a given trace or the FFE number of taps for a certain target amplitude is the adaptive equalization feature available in the DSO.

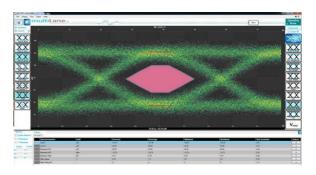
Measuring Insertion Loss

If you have a source such as an ML BERT, you can measure the insertion loss (S21) of your device using the DSO. The available dynamic range is 70 dB. The user is guided through the process by a wizard.

Tase	Eye Widds (H	Equalization, Embedding &
The last of the la	SPanneter RCUA RITATION	and the second sec

Spectrum Analysis view & THD

The DSO uses DFT to derive the spectral content of the signal present at the input. It also calculates the Total Harmonic Distortion figure.


Mechanical Dimensions

The AT4025 is customized to fit and seamlessly function inside an Advantest HSIO test head extender. One plug-in can host up to 2xDSOs; you can fit a total of 4 plug-ins in a V93K tester.

Dimensions: 265.6 x 33.2 x 58 mm³

Annex A: PAM4 and NRZ Sample Measurements

Ordering Information

Option	Description	
AT4025-XX		
-XX	Bandwidth of electrical channel = 32 or 50 GHz	
3YW	3-year warranty	

multilaneinc.com

North America

48521 Warm Springs Blvd. Suite 310 Fremont, CA 94539 USA +1 510 573 6388

Worldwide

Houmal Technology Park Askarieh Main Road Houmal, Lebanon +961 5 941 668

Asia

14F-5/ Rm.5, 14F., No 295 Sec.2, Guangfu Rd. East Dist., Hsinchu City 300, Taiwan (R.O.C) +886 3 5744 591